Expression of mRNA Mastermind-like Domain-containing 1, Androgen Receptor, and Estrogen Receptor in Patients with Hypospadias
DOI:
https://doi.org/10.3889/oamjms.2020.4557Keywords:
Hypospadias, MAMLD1, Androgen receptor, Estrogen ReceptorAbstract
BACKGROUND: Androgen (AR) and Estrogen (ER) hormones play an important role in the prenatal and postnatal development of the urogenital tract and especially the penis. Growth factors also influence the development of genital structures. Little is known about the exact role of Mastermind Like Domain 1 (MAMLD1) in sexual development. A role in sex differentiation through supporting testosterone production in critical periods of male development has been suggested. MAMLD1 mutations result in hypospadias with and without a disorder of sexual development (DSD) primarily because of compromised testosterone production around the critical period for fetal sex development, but the underlying etiology remains unclear.
AIM: The objective of this study was to investigate the correlation between gene factor MAMLD1, AR, ER1, and ER2 with the incidence of hypospadias.
OBJECTIVE: The objective of this study was to investigate the correlation between gene factor MAMLD1, AR, ER1, and ER2 with the incidence of hypospadias.
METHODS: From 2017-2018, peri-urethral dartos were harvested from 46 patients with proximal hypospadias, 24 patients with distal hypospadias and 10 patients with normal penile were used as controls. The expressions of MAMLD1, AR, ER1, and ER2 were investigated by one-step quantitative polymerase chain reaction.
RESULTS: Median age was 5 years old in the 70 patients with hypospadias and 6 years old in the control subjects. Total specimens taken included 24 distal penile, 46 proximal penile, and 10 normal penile specimens. We found decreasing MAMLD1 and AR expressions, but ER2 expression increased in patients with hypospadias compared to controls, which was statistically significant (p < 0.001). A positive correlation between MAMLD1 and AR was found in patients with hypospadias (r = 0.062; p = 0.038).
CONCLUSIONS: Decreasing of MAMLD1 and AR expression was followed by increasing ER2 expression in patients with hypospadias. MAMLD1 had a positive correlation with AR so the defect of MAMLD1 may influence AR and increase the incidence of hypospadias.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kurahashi N, Sata F, Kasai S, Shibata T, Moriya K, Yamada H, et al. Maternal genetic polymorphisms in CYP1A1, GSTM1 and GSTT1 and the risk of hypospadias. Mol Hum Reprod. 2005;11(2):93-8. https://doi.org/10.1093/molehr/gah134 PMid:15579657
Snodgrass W, Macedo A, Hoebeke P, Mouriquand PD. Hypospadias dilemmas: A round table. J Pediatr Urol. 2011;7(2):145-57. https://doi.org/10.1016/j.jpurol.2010.11.009 PMid:21236734
Leung AK, Robson WL. Hypospadias: An update. Asian J Androl. 2007;9(1):16-22. PMid:17187155
Albert N, Ulrichs C, Gluer S, Hiort O, Sinnecker GH, Mildenberger H, et al. Etiologic classification of severe hypospadias: Implications for prognosis and management. J Pediatr. 1997;131(3):386-92. https://doi.org/10.1097/00005392-199804000-00115 PMid:9329414
Willingham E, Baskin LS. Candidate genes and their response to environmental agents in the etiology of hypospadias. Nat Clin Pract Urol. 2007;4(5):270-9. https://doi.org/10.1038/ncpuro0783 PMid:17483812
Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The genetic and environmental factors underlying hypospadias. Sex Dev. 2015;9(5):239-259. https://doi.org/10.1159/000441988 PMid:26613581
Miyado M, Nakamura M, Miyado K, Morohashi KI, Sano S, Nagata E, et al. Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal leydig cells but permits normal genital and reproductive development. Endocrinology. 2012;153(12):6033-40. https:// doi.org/10.1210/en.2012-1324 PMid:23087174
Ogata T, Wada Y, Fukami M. MAMLD1 (CXorf6): A new gene for hypospadias. Sex Dev. 2008;2(4-5):244-50. https://doi. org/10.1159/000152040 PMid:18987498
Van Der Zanden LF, Van Rooij IA, Feitz WF, Franke B, Knoers NV, Roeleveld N. Aetiology of hypospadias: A systematic review of genes and environment. Hum Reprod Update. 2012;18(3):260- 83. https://doi.org/10.1093/humupd/dms002 PMid:22371315
Bouchoucha N, Samara-Boustani D, Pandey AV, Bony- Trifunovic H, Hofer G, Aigrain Y, et al. Characterization of a novel CYP19A1 (aromatase) R192H mutation causing virilization of a 46,XX newborn, undervirilization of the 46,XY brother, but no virilization of the mother during pregnancies. Mol Cell Endocrinol. 2014;390(1-2):8-17. https://doi.org/10.1016/j.mce.2014.03.008 PMid:24705274
Dietrich W, Haitel A, Huber JC, Reiter WJ. Expression of estrogen receptors in human corpus cavernosum and male urethra. J Histochem Cytochem. 2004;52(3):355-60. https://doi. org/10.1177/002215540405200306 PMid:14966202
Schnack TH, Zdravkovic S, Myrup C, Westergaard T, Christensen K, Wohlfahrt J, et al. Familial aggregation of hypospadias: A cohort study. Am J Epidemiol. 2008;167(3):251-6. https://doi.org/10.1093/aje/kwm317 PMid:18042671
Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, Camerino G, et al. CXorf6 is a causative gene for hypospadias. Nat Genet. 2006;38(12):1369-71. https://doi.org/10.1038/ ng1900 PMid:17086185
Kalfa N, Liu B, Klein O, Audran F, Wang MH, Mei C, et al. Mutations of CXorf6 are associated with a range of severities of hypospadias. Eur J Endocrinol. 2008;159(4):453-8. https://doi. org/10.1530/eje-08-0085 PMid:18635673
Chen Y, Thai HT, Lundin J, Lagerstedt-Robinson K, Zhao S, Markljung E, et al. Mutational study of the MAMLD1-gene in hypospadias. Eur J Med Genet. 2010;53(3):122-6. https://doi. org/10.1016/j.ejmg.2010.03.005 PMid:20347055
Achermann JC, Hughes I. Pediatric disorders of sex development. In: Williams Textbook of Endocrinology. Philadelphia, PA: Elsevier; 2016.
Celayir A. Expression of androgen, estrogen, and progesterone hormone receptors in the penile tissues of children with different types of hypospadias. North Clin Istanb. 2018;6(2):110-6. https://doi.org/10.14744/nci.2018.47108 PMid:31297475
Tirabassi G, Muti ND, Corona G, Maggi M, Balercia G. Androgen receptor gene CAG repeat polymorphism regulates the metabolic effects of testosterone replacement therapy in male postsurgical hypogonadotropic hypogonadism. Int J Endocrinol. 2013;2013:816740. https://doi.org/10.1155/2013/816740 PMid:24454369
Francomano D, Greco EA, Lenzi A, Aversa A. CAG repeat testing of androgen receptor polymorphism: Is this necessary for the best clinical management of hypogonadism? J Sex Med. 2013;10(10):2373-81. https://doi.org/10.1111/jsm.12268 PMid:23844628
Ferlin A, Bartoloni L, Rizzo G, Roverato A, Garolla A, Foresta C. Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility. Mol Hum Reprod. 2004;10(6):417-21. https://doi.org/10.1093/molehr/gah054 PMid:15044606
Sheppard RL, Spangenburg EE, Chin ER, Roth SM. Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development. Physiol Genomics. 2011;43(20):1135-43. https://doi.org/10.1152/ physiolgenomics.00049.2011 PMid:21828246
Zitzmann M, Nieschlag E. The CAG repeat polymorphism within the androgen receptor gene and maleness. Int J Androl. 2003;26(2):76-83. https://doi. org/10.1046/j.1365-2605.2003.00393.x PMid:12641825
Tse JY, Liu VW, Yeung WS, Lau EY, Ng EH, Ho PC. Molecular analysis of the androgen receptor gene in Hong Kong Chinese infertile men. J Assist Reprod Genet. 2003;20(6):227-33. PMid:12877254
Vottero A, Minari R, Viani I, Tassi F, Bonatti F, Neri TM, et al. Evidence for epigenetic abnormalities of the androgen receptor gene in foreskin from children with hypospadias. J Clin Endocrinol Metab. 2011;96(12):E1953-62. https://doi. org/10.1210/jc.2011-0511 PMid:21937623
Crescioli C, Maggi M, Vannelli GB, Ferruzzi P, Granchi S, Mancina R, et al. Expression of functional estrogen receptors in human fetal male external genitalia. J Clin Endocrinol Metab. 2003;88(4):1815-24. https://doi.org/10.1210/jc.2002-021085 PMid:12679479
Kim KS, Liu W, Cunha GR, Russell DW, Huang H, Shapiro E, et al. Expression of the androgen receptor and 5 alpha-reductase Type 2 in the developing human fetal penis and urethra. Cell Tissue Res. 2002;307(2):145-53. https://doi.org/10.1007/ s004410100464 PMid:11845321
Mowa CN, Jesmin S, Miyauchi T. The penis: A new target and source of estrogen in male reproduction. Histol Histopathol. 2006;21(1):53-67. PMid:16267787
Schultheiss D, Badalyan R, Pilatz A, Gabouev AI, Schlote N, Wefer J, et al. Androgen and estrogen receptors in the human corpus cavernosum penis: Immunohistochemical and cell culture results. World J Urol. 2003;21(5):320-4. https://doi. org/10.1007/s00345-003-0371-y PMid:14586547
Staib P, Kau N, Romalo G, Schweikert HU. Oestrogen formation in genital and non-genital skin fibroblasts cultured from patients with hypospadias. Clin Endocrinol (Oxf). 1994;41(2):237-43. https://doi.org/10.1111/j.1365-2265.1994.tb02536.x PMid:7923829
Downloads
Published
How to Cite
License
Copyright (c) 2020 Prahara Yuri, Didik Setyo Heriyanto, Arry Rodjani, Yonas Immanuel Hutasoit, Andre Yudha Alfanius Hutahaean, Muhammad Ridhaniar Rahman, Reisya Rizki Amanda, Yusuf Kirana Raksawardana, Rahmadani Puji Lestari, Firly Putri Fardilla, Irfan Wahyudi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0