Novel Sequence Variants in the NPC1 Gene in Egyptian Patients with Niemann-Pick Type C

Authors

  • Mona L. Essawi Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
  • Asmaa F. Abdel-aleem Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
  • Mohamed A. Badawy Department of Organic Chemistry, Faculty of Science, Cairo University, Giza, Egypt
  • Maha S. Zaki Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
  • Magda F. Mohamed Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt; Department of Chemistry,Faculty of Science and Arts, Khulais, University of Jeddah,Jeddah, Saudi Arabia
  • Heba A. Hassan Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
  • Ekram M. Fateen Department of Biochemical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2020.4626

Keywords:

Niemann-Pick disease type C, NPC1 gene, NPC2 gene, Hot spot residues

Abstract

BACKGROUND: Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, progressive neuro-visceraldisease caused by biallelic mutations in either NPC1gene (95% of cases) or NPC2 gene.

AIM: This caseseries study aimed at the molecular analysis of certain hot spots of NPC1 genein NPC Egyptian patients.

METHODS: The study included 15 unrelated NPC patients and selected parents,as well as20 healthy controls of matched sex and age. Clinical investigations were performed according to well established clinical criteria. Assessment of the chitotriosidase level, as an initial screening tool for NPC, was done in all cases. Polymerase chain reaction amplification of NPC1 exons (17–25) encountering the hotspot residues (855–1098 and1038–1253) was carried out followed by direct sequencingfor mutational analysis.

RESULTS: All includedpatients with mainly neurovisceral involvement were characterized. The onset of the disease varied from early-infantile (58.3%) to late-infantile (26.7%) and juvenile-onset (6.7%). Ahigh chitotriosidase level wasobservedin all patients. Molecular analysis of NPC1 (exons 17–25) confirmed 15 mutant alleles out of 30 studied ones. They included two novel homozygous missense variants (p.Ser1169Arg and p.Ser1197Phe) and previously reportedfour mutations (p.Arg958*, p.Gly910Ser, p.Ala927Glyfs*38, and andp.Cys1011*).

CONCLUSION: The two studied amino acid residues (855–1098 and 1038–1253) could beconsidered aspotential hotspot regions in NPC1 Egyptian patients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Polese-Bonatto M, Bock H, Farias AC, Mergener R, Matte MC, Gil MS, et al. Niemann-pick disease Type C: Mutation spectrum and novel sequence variations in the human NPC1 gene. Mol Neurobiol. 2019;56(9):6426-35.https://doi.org/10.1007/ s12035-019-1528-z PMid:30820861

Vanier MT, Gissen P, Bauer P, Coll MJ, Burlina A, Hendriksz CJ, et al. Diagnostic tests for niemann-pick disease Type C (NP-C): A critical review. Mol Genet Metab. 2016;118(4):244-54. https://doi.org/10.1016/j.ymgme.2016.06.004 PMid:27339554

Vanier MT. Niemann-pick disease Type C. OrphanetJRare Dis. 2010;5(1):16.https://doi.org/10.1186/1750-1172-5-16 PMid:20525256

Geberhiwot T, Moro A, Dardis A, Ramaswami U, Sirrs S, Marfa MP, et al. Consensus clinical management guidelines for Niemann-pick disease Type C. Orphanet J Rare Dis. 2018;13(1):50. PMid:29625568

Dardis A, Zampieri S, Gellera C, Carrozzo R, Cattarossi S, Peruzzo P, et al. Molecular genetics of Niemann-pick Type C disease in Italy: An update on 105 patients and description of 18 NPC1 novel variants. J Clin Med. 2020;9(3):679. PMid:32138288

Bounford KM, Gissen P. Genetic and laboratory diagnostic approach in Niemann pick disease Type C. J Neurol. 2014;261(2):569-75.https://doi.org/10.1007/s00415-014-7386-8 PMid:25145893

Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human gene mutation database (HGMD): 2003 update. HumMutat. 2003;21(6):577-81.https://doi.org/10.1002/ humu.10212 PMid:12754702

Yang CC, Su YN, Chiou PC, Fietz MJ, Yu CL, Hwu WL, et al. Six novel NPC1 mutations in Chinese patients with Niemann-pick disease Type C. J Neurol Neurosurg Psychiatry. 2005;76(4):592-5.https://doi.org/10.1136/jnnp.2004.046045 PMid:15774455

Bountouvi E, Papadopoulou A, Vanier MT, Nyktari G, Kanellakis S, Michelakakis H, et al. Novel NPC1 mutations with different segregation in two related Greek patients with Niemann-pick Type C disease: Molecular study in the extended pedigree and clinical correlations. BMC Med Genet. 2017;18(1):51. https://doi.org/10.1186/s12881-017-0409-4 PMid:28472934

Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-pick disease Type C patients: A review. Orphanet J Rare Dis. 2018;13(1):140.https://doi.org/10.1186/s13023-018-0844-0 PMid:30111334

Hughes M, Smith D, Morris L, Tordo J, Palomar-Martin N, Henckaerts E, et al. Development of gene therapy for Niemann-pick Type C disease.In: Annual Conference of the British Society for Geneand Cell Therapy. London, England: University College London; 2016.

Millat G, Baïlo N, Molinero S, Rodriguez C, Chikh K, Vanier MT. Niemann-pick C disease: Use of denaturing high performance liquid chromatography for the detection of NPC1 and NPC2 genetic variations and impact on management of patients and families. Mol Genet Metab. 2005;86(1-2):220-32.https://doi. org/10.1016/j.ymgme.2005.07.007 PMid:16126423

Daniels LB, Glew RH, Radin NS, Vunnam RR. A revised fluorometric assay for Gaucher’s disease using conduritol-β-epoxide with liver as the source of β-glucosidase. Clin Chim Acta. 1980;106(2):155- 63.https://doi.org/10.1016/0009-8981(80)90168-0

Van Diggelen O, Voznyi YV, Keulemans JL, Schoonderwoerd K, Ledvinova J, Mengel E, et al. A new fluorimetric enzyme assay for the diagnosis of Niemann-pick A/B, with specificity of natural sphingomyelinase substrate. J Inherit Metab Dis. 2005;28(5):733-41.https://doi.org/10.1007/s10545-005-0105-y PMid:16151905

Hollak C, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of gaucher disease. J Clin Invest. 1994;93(3):1288-92.https://doi. org/10.1172/jci117084 PMid:8132768

Miller S, Dykes DD, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.https://doi.org/10.1093/nar/16.3.1215 PMid:3344216

Tarugi P, Ballarini G, Bembi B, Battisti C, Palmeri S, Panzani F, et al. Niemann-pick Type C disease mutations of NPC1 gene and evidence of abnormal expression of some mutant alleles in fibroblasts. J Lipid Res. 2002;43(11):1908-19.https://doi. org/10.1194/jlr.m200203-jlr200 PMid:12401890

Pruitt KD, Katz KS, Sicotte H, Maglott DR. Introducing Ref Seq and Locus Link: Curated human genome resources at the NCBI. Trends Genet. 2000;16(1):44-7.https://doi.org/10.1016/ s0168-9525(99)01882-x

denDunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37(6):564-9.https://doi.org/10.1002/humu.22981 PMid:26931183

Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2015;44(D1):D862-8. https://doi.org/10.1093/nar/gkv1222 PMid:26582918

Karczewski K, Francioli L. The Genome Aggregation Database (gnomAD). Boston, MA: MacArthur Lab; 2017.

AdzhubeiI A, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248. PMid:20354512

Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(W1):W452-7.https://doi. org/10.1093/nar/gks539 PMid:22689647

Schwarz JM, Cooper DN, Schuelke M, Seelow D. Mutation Taster2: Mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361. PMid:24681721

Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. Meta Dome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40(8):1030-8.https://doi.org/10.1101/509935 PMid:31116477

Venselaar H, TeBeek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics. 2010;11(1):548.https://doi. org/10.1186/1471-2105-11-548 PMid:21059217

Consortium U. UniProt: A hub for protein information. Nucleic Acids Res. 2014;43(D1):D204-12.https://doi.org/10.1093/nar/ gku989 PMid:25348405

Omasits U, Ahrens CH, Müller S, Wollscheid B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2013;30(6):884-6. https://doi.org/10.1093/bioinformatics/btt607 PMid:24162465

Benussi A, Alberici A, Premi E, Bertasi V, Cotelli MS, Turla M, et al. Phenotypic heterogeneity of Niemann-pick disease Type C in monozygotic twins. J Neurol. 2015;262(3):642-7. PMid:25536905

Vanier MT. Niemann-pick C disease: History, current research topics, biological and molecular diagnosis. Arch Pediatr. 2010;17Suppl 2:S41-4. PMid:20620894

Mahmoud IG, Elmonem MA, Elkhateeb NM, Elnaggar W, Sobhi A, Girgis MY, et al. Clinical, biomarker and genetic spectrum of Niemann-pick Type C in Egypt: The detection of nine novel NPC1 mutations. Clin Genet. 2019;95(4):537.https:// doi.org/10.1111/cge.13492/v1/review2 PMid:30633340

De Castro-Oros I, Irún P, Cebolla JJ, Rodriguez-Sureda V, Mallén M, Pueyo MJ, et al. Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-pick disease Type C: A prospective observational study. J Transl Med. 2017;15(1):43.https://doi. org/10.1186/s12967-017-1146-3 PMid:28222799

Shammas H, Kuech EM, Rizk S, Das AM, Naim HY. Different Niemann-pick C1 genotypes generate protein phenotypes that vary in their intracellular processing, trafficking and localization. Sci Rep. 2019;9(1):5292.https://doi.org/10.1038/ s41598-019-41707-y

Park WD, O’Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS, et al. Identification of 58 novel mutations in Niemann-pick disease Type C: Correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat. 2003;22(4):313-25.https://doi.org/10.1002/humu.10255 PMid:12955717

Millat G, Marçais C, Tomasetto C, Chikh K, Fensom AH, Harzer K, et al. Niemann-pick C1 disease: Correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet. 2001;68(6):1373-85.https://doi.org/10.1086/320606 PMid:11333381

Bauer P, Balding DJ, Klünemann HH, Linden DE, Ory DS, Pineda M, et al. Genetic screening for Niemann-pick disease Type C in adults with neurological and psychiatric symptoms: Findings from the ZOOM study. Hum Mol Genet. 2013;22(21):4349-56.https://doi.org/10.1093/hmg/ddt284 PMid:23773996

Rohanizadegan M, Abdo SM, O’Donnell-Luria A, Mihalek I, P, Sanders M, et al. Utility of rapid whole-exome sequencing in the diagnosis of Niemann-pick disease Type C presenting with fetal hydrops and acute liver failure. Cold Spring Harb Mol Case Stud. 2017;3(6):a002147.https://doi.org/10.1101/mcs.a002147 PMid:28802248142

Downloads

Published

2020-05-05

How to Cite

1.
Essawi ML, Abdel-aleem AF, Badawy MA, Zaki MS, Mohamed MF, Hassan HA, Fateen EM. Novel Sequence Variants in the NPC1 Gene in Egyptian Patients with Niemann-Pick Type C. Open Access Maced J Med Sci [Internet]. 2020 May 5 [cited 2024 Apr. 25];8(A):134-45. Available from: https://oamjms.eu/index.php/mjms/article/view/4626

Similar Articles

You may also start an advanced similarity search for this article.