Apoptosis and Cell Cycle Pathway-Focused Genes Expression Analysis in Patients with Different Forms of Thyroid Pathology
DOI:
https://doi.org/10.3889/oamjms.2020.4760Keywords:
apoptosis, cell cycle, mRNA, autoimmune thyroiditis, hypothyroidismAbstract
BACKGROUND: Thyroid hormones are key regulators of essential cellular processes including proliferation, differentiation, and finally apoptosis.
AIM: The aim of study was to detect changes in the expression of apoptosis and cell cycle pathway-focused genes in patients with different forms of thyroid pathology.
PATIENTS AND METHODS: 36 patients with thyroid pathology were enrolled in the study. We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify apoptosis and cell cycle pathway-focused genes expression in patients with postoperative hypothyroidism, hypothyroidism as a result of autoimmune thyroiditis (AIT) and AIT with elevated serum an anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies.
RESULTS: It was shown that patients with elevated serum anti-Tg and anti-TPO antibodies and with hypothyroidism resulting from AIT had a significantly lower expression of FAS, TGFB, TP53, TGFA, while the expression of CD40 was increased. The mRNA levels of BCL2 and BAX decreased in the patients with elevated serum anti-Tg and anti-TPO antibodies and increased in the patients with hypothyroidism resulting from AIT and postoperative hypothyroidism. The patients with hypothyroidism resulting from AIT and postoperative hypothyroidism had significantly lower expression of HSPB1. NF1 expression did not change in all groups of patients.
CONCLUSION: The results of this study demonstrate that AIT and hypothyroidism affect the mRNA-level expression of apoptosis and cell cycle pathway-focused genes in gene specific manner and that these changes to gene expression can be responsible for the apoptosis signs and symptoms associated with thyroid pathology.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Silva Nde O, Ronsoni MF, Colombo BS, Corrêa CG, Hatanaka SA, Canalli MH, et al. Clinical and laboratory characteristics of patients with thyroid diseases with and without alanine aminotransferase levels above the upper tertile-cross-sectional analytical study. Arch Endocrinol Metab. 2016;60(2):101-7. https://doi.org/10.1590/2359-3997000000066 PMid:26331222
Zaletel K, Gaberšček S. Hashimoto’s thyroiditis: From genes to the disease. Curr Genomics. 2011;12(8):576-88. PMid:22654557
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front Endocrinol (Lausanne). 2019;10:59. https://doi.org/10.3389/fendo.2019.00059 PMid:30814976
Singh R, Upadhyay G, Kumar S, Kapoor A, Kumar A, Tiwari M, et al. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum. J Endocrinol. 2003;176(1):39-46. https://doi.org/10.1677/ joe.0.1760039 PMid:12525248
Putilin DA, Kamyshnyi AM. Сhanges of glut1, mTOR and AMPK1α gene expression in pancreatic lymph node lymphocytes of rats with experimental diabetes mellitus. Med Immunol (Russ). 2016;18(4):339-46. https://doi. org/10.15789/1563-0625-2016-4-339-346
Lin HY, Glinsky GV, Mousa SA, Davis PJ. Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget. 2015;6:14735-43. https://doi.org/10.18632/oncotarget.4023 PMid:26041883
Liu YC, Yeh CT, Lin KH. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. Int J Mol Sci. 2019;20:4986. https://doi.org/10.3390/ ijms20204986 PMid:31600974
Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American association of clinical endocrinologists and the American thyroid association. Endocr Pract. 2012;18:988-1028. https://doi.org/10.4158/ep12280.gl PMid:23246686
Opferman JT, Kothari A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 2018;25:37-45. https://doi. org/10.1038/cdd.2017.170
Alva-Sanchez C, Rodriguez A, Villanueva I, Anguiano B, Aceves C, Pacheco-Rosado J. The NMDA receptor antagonist MK-801 abolishes the increase in both p53 and Bax/Bcl2 index induced by adult-onset hypothyroidism in rat. Acta Neurobiol Exp (Wars). 2014;74(1):111-7. https://doi.org/10.1016/j.neulet.2009.02.017 PMid:24718050
Myśliwiec J, Okota M, Nikołajuk A, Górska M. Soluble Fas, Fas ligand and Bcl-2 in autoimmune thyroid diseases: Relation to humoral immune response markers. Adv Med Sci. 2006;51(1):119-22. PMid:17357290
Huber AK, Finkelman FD, Li CW, Concepcion E, Smith E, Jacobson E, et al. Genetically driven target tissue overexpression of CD40: A novel mechanism in autoimmune disease. J Immunol. 2012;189:3043-53. https://doi.org/10.4049/ jimmunol.1200311 PMid:22888137
Bilir B, Soysal-Atile N, Ekiz-Bilir B, Yilmaz I, Bali I, Altintas N, et al. Evaluation of SCUBE-1 and sCD40L biomarkers in patients with hypothyroidism due to Hashimoto’s thyroiditis: A single-blind, controlled clinical study. Eur Rev Med Pharmacol Sci. 2016;20(3):407-13. https://doi.org/10.5222/mmj.2016.156 PMid:26914113
Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roliński J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J Immunol Res. 2015;2015:979167. https://doi. org/10.1155/2015/979167 PMid:26000316
Bossowski A, Czarnocka B, Stasiak-Barmuta A, Bardadin K, Urban M, Dadan J. Analysis of Fas, FasL and Caspase-8 expression in thyroid gland in young patients with immune andnon-immune thyroid diseases. Endokrynol Pol. 2007;58(4):303-13. https://doi.org/10.1080/08916930701727749 PMid:18058722
Stassi G, Todaro M, Bucchieri F, Stoppacciaro A, Farina F, Zummo G, et al. Fas/Fas ligand-driven T cell apoptosis as a consequence of ineffective thyroid immunoprivilege in Hashimoto’s thyroiditis. J Immunol. 1999;162(1):263-7. PMid:9886394
Łacka K, Maciejewski A. The role of apoptosis in the etiopathogenesis of autoimmune thyroiditis. Pol Merkur Lekarski. 2012;32(188):87-92. PMid:22590910
Bona G, Defranco S, Chiocchetti A, Indelicato M, Biava A, Difranco D, et al. Defective functionof Fas in T cells from paediatric patients with autoimmunethyroid diseases. Clin Exp Immunol. 2003;133(3):430-7. https://doi. org/10.1046/j.1365-2249.2003.02221.x PMid:12930371
Breed ER, Hilliard CA, Yoseph B, Mittal R, Liang Z, Chen CW, et al. The small heat shock protein HSPB1 protects mice from sepsis. Sci Rep. 2018;8(1):12493. https://doi.org/10.1038/ s41598-018-30752-8 PMid:30131526
Kanagasabai R, Karthikeyan K, Vedam K, Qien W, Zhu Q, Ilangovan G. Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Mol Cancer Res. 2010;8(10):1399-412. https://doi. org/10.1158/1541-7786.mcr-10-0181 PMid:20858736
Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, et al. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem. 2008;283(18):12305-13. https://doi.org/10.1074/jbc. m801291200 PMid:18299320
Carra S, Crippa V, Rusmini P, Boncoraglio A, Minoia M, Giorgetti E, et al. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol. 2012;97(2):83-100. https://doi.org/10.1016/j.pneurobio.2011.09.009 PMid:21971574
Güler S, Yeşil G, Önal H. Endocrinological evaluations of a neurofibromatosis type 1 cohort: Is it necessary to evaluate autoimmune thyroiditis in neurofibromatosis type 1? Balkan Med J. 2017;34(6):522-6. https://doi.org/10.4274/ balkanmedj.2015.1717 PMid:28552839
Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3:17004. https://doi.org/10.1038/nrdp.2017.4 PMid:28230061
Nanda A. Autoimmune diseases associated with neurofibromatosis type 1. Pediatr Dermatol. 2008;25(3):392-3. https://doi. org/10.1111/j.1525-1470.2008.00692.x PMid:18577055
Nabi J. Neurofibromatosis type 1 associated with Hashimoto’s thyroiditis: Coincidence or possible link. Case Rep Neurol Med. 2013;2013:1-4. https://doi.org/10.1155/2013/910656
Sasazawa DT, Tsukumo DM, Lalli CA. Myxedema coma in a patient with type 1 neurofibromatosis: Rare association. Arq Bras Endocrinol Metabol. 2013;57(9):743-7. https://doi. org/10.1590/s0004-27302013000900012 PMid:24402022
Silva TM, Moretto FC, Sibio MT, Gonçalves BM, Oliveira M, Olimpio RM, et al. Triiodothyronine (T3) upregulates the expression of proto-oncogene TGFA independent of MAPK/ ERK pathway activation in the human breast adenocarcinoma cell line, MCF7. Arch Endocrinol Metab. 2019;63(2):142-7. https://doi.org/10.20945/2359-3997000000114 PMid:30916164
Stanilova SA, Gerenova JB, Miteva LD, Manolova IM. The role of transforming growth factor-β1 gene polymorphism and its serum levels in Hashimoto’s thyroiditis. Curr Pharm Biotechnol. 2018;19(7):581-9. https://doi.org/10.2174/13892010196661808 02142803 PMid:30070177
Yamada H, Watanabe M, Nanba T, Akamizu T, Iwatani Y. The +869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease. Clin Exp Immunol. 2008;151(3):379- 82. https://doi.org/10.1111/j.1365-2249.2007.03575.x PMid:18190611
Yen CC, Huang YH, Liao CY, Liao CJ, Cheng WL, Chen WJ, et al. Mediation of the inhibitory effect of thyroid hormone on proliferation of hepatoma cells by transforming growth factor-beta. J Mol Endocrinol. 2006;36(1):9-21. https://doi.org/10.1677/ jme.1.01911 PMid:16461923
Dinda S, Sanchez A, Moudgil V. Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene. 2002;21:761-8. https://doi.org/10.1038/sj.onc.1205136 PMid:11850804
Shih A, Lin HY, Davis FB, Davis PJ. Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry. 2001;40(9):2870-8. https://doi. org/10.1021/bi001978b PMid:11258898
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Iryna Bilous, Larysa Pavlovych, Inna Krynytska, Mariya Marushchak, Aleksandr Kamyshnyi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0