Association of Programmed Death Ligand 1 and C-X-C Chemokine Receptor Type 4 Immunoexpression with Pelvic Lymph Node Metastasis in Cervical Squamous Cell Carcinoma
DOI:
https://doi.org/10.3889/oamjms.2020.4778Keywords:
Cervical squamous cell carcinoma, Pelvic lymph node metastasis, Programmed death ligand 1, C-X-C chemokine receptor type 4Abstract
BACKGROUND: Squamous cell carcinoma (SCC) is the most common type of cervical cancer. Pelvic lymph node metastasis in cervical SCC is common. Programmed death ligand 1 (PD-L1) on tumor cells has been reported to impede anti-tumor immunity, resulting in immune evasion. C-X-C chemokine receptor type 4 (CXCR4) plays an important role in proliferation, survival, and migration (chemotaxis) of tumor cells.
AIM: This study aimed to analyze the association of PD-L1 and CXCR4 immunoexpression with pelvic lymph node metastasis in cervical SCC.
MATERIALS AND METHODS: Forty cases of cervical SCC in the Department of Anatomical Pathology, Faculty of Medicine, Padjadjaran University, Dr. Hasan Sadikin Hospital, Bandung, during 2013–2018 were collected and divided into two groups; (1) cervical SCC metastasize to pelvic lymph node and (2) cervical SCC non-metastasize to pelvic lymph node, of 20 cases, respectively. The expression of PD-L1 and CXCR4 was detected using immunohistochemistry.
RESULTS: High immunoexpression of PD-L1 and CXCR4 in cervical SCC showed significant association with pelvic lymph node metastasis (p < 0.05). The stepwise logistic regression analysis revealed that both PD-L1 and CXCR4 immunoexpression influenced pelvic lymph node metastasis simultaneously.
CONCLUSION: It could be concluded that the higher PD-L1 and CXCR4 immunoexpression showed the higher ability of tumor cells to metastasize to the pelvic lymph node.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Globocan. Cancer Today. France: International Agency for Research on Cancer. Geneva: World Health Organization; 2018. Available from: https://www.gco.iarc.fr/today/data/factsheets/ populations/360-indonesia-fact-sheets.pdf. [Last accessed on 2019 Aug 27]
Stoler M, Bergeron C, Colgan TJ, Ferenczy AS, Herrington CS, Kim KR, et al. Squamous cell tumours and precursors. In: Kurman RJ, Carcangiu ML, Herrington S, Young RH, editors. WHO Classification of Tumours of Female Reproductive Organs. 4th ed. Lyon: IARC; 2014. p. 172-82.
Gilks B. Uterus: Cervix. In: Goldblum JR, Lamps LW, McKenney JK, Myers JL, editors. Rosai and Ackerman’s Surgical Pathology. 11th ed. Philadelphia, PA: Elsevier Health Sciences; 2018. p. 1260-73.
Hacker NF, Vermoken JB. Cervical cancer. In: Berek JS, Hacker NF, editors. Berek and Hacker’s Gynecologic Oncology. 6th ed. Philadelphia, PA: Wolter Kluwers; 2015. p. 326-89.
Bhatla N, Berek JS, Fredes MC, Denny LA, Grenman S, Karunaratne K, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet. 2019;145(1):129-35. https://doi.org/10.1002/ijgo.12749 PMid:30656645
Matsuo K, Machida H, Mandelbaum RS, Konishi I, Mikami M. Validation of the 2018 FIGO cervical cancer staging system. Gynecol Oncol. 2019;152(1):87-93. https://doi.org/10.1016/j.ygyno.2018.10.026 PMid:30389105
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10. https://doi.org/10.1186/s12943-018-0928-4 PMid:30646912
Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824-37. https://doi.org/10.1002/jcp.28358 PMid:30784085
Guan J, Lim KS, Mekhail T, Chang CC. Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: A key player against various cancers. Arch Pathol Lab Med. 2017;141(6):851-61. https://doi.org/10.5858/arpa.2016-0361-RA PMid:28418281
Fabrizio FP, Trombetta D, Rossi A, Sparaneo A, Castellana S, Muscarella LA. Gene code CD274/PD-L1: From molecular basis toward cancer immunotherapy. Ther Adv Med Oncol. 2018;10:1-18. https://doi.org/10.1177/1758835918815598 PMid:30574211
Seliger B. Basis of PD1/PD-L1 therapies. J Clin Med. 2019;8(12):2168. https://doi.org/10.3390/jcm8122168 PMid:31817953
Shen X, Zhang L, Li J, Li Y, Wang Y, Xu Z. Recent findings in the regulation of programmed death ligand 1 expression. Front Immunol. 2019;10:1337. https://doi.org/10.3389/fimmu.2019.01337 PMid:31258527
Dong P, Xiong Y, Yue J, Hanley SJ, Watari H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: Beyond Immune evasion. Front Oncol. 2018;8:386. https://doi.org/10.3389/fonc.2018.00386 PMid:30283733
Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767-78. https://doi.org/10.1056/NEJMra1514296 PMid:27806234
Feng M, Xu L, He Y, Sun L, Zhang Y, Wang W. Clinical significance of PD-L1 (CD274) enhanced expression in cervical squamous cell carcinoma. Int J Clin Exp Pathol. 2018;11(11):5370-8. PMid:31949618
Kim M, Kim H, Suh DH, Kim K, Kim H, Kim YB, et al. Identifying rational candidates for immunotherapy targeting PD-1/PD-L1 in cervical cancer. Anticancer Res. 2017;37(9):5087-94. https://doi.org/10.21873/anticanres.11926 PMid:28870938
Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. Medicine (Baltimore). 2017;96(18):e6369. https://doi.org/10.1097/ MD.0000000000006369 PMid:28471952
Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 2016;9:5023-39. https://doi.org/10.2147/OTT.S105862 PMid:27574444
Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García- Granda MJ, Vera R, et al. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther. 2018;3:26. https://doi.org/10.1038/s41392-018-0022-9 PMid:30275987
Sanmamed MF, Chen L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J. 2014;20(4):256-61. https://doi.org/10.1097/PPO.0000000000000061 PMid:25098285
Sekuła M, Miekus K, Majka M. Downregulation of the CXCR4 receptor inhibits cervical carcinoma metastatic behavior in vitro and in vivo. Int J Oncol. 2014;44(6):1853-60. https://doi.org/10.3892/ijo.2014.2383 PMid:24728301
Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner F-P, et al. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med. 2016;57(5):741-6. https://doi.org/10.2967/jnumed.115.161034 PMid:26769866
Zhao H, Guo L, Zhao J, Weng H, Zhao B. CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget. 2015;6(7):5022-40. https://doi.org/10.18632/oncotarget.3217 PMid:25669980
Cai C, Rodepeter FR, Rossmann A, Teymoortash A, Lee JS, Quint K, et al. SIVmac239-nef down-regulates cell surface expression of CXCR4 in tumor cells and inhibits proliferation, migration and angiogenesis. Anticancer Res. 2012;32(7):2759-68. PMid:22753736
Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/ CXCR4 axis in tumor immunotherapy. Curr Med Chem. 2019;26(17):3026-41. https://doi.org/10.2174/0929867324666170830111531 PMid:28875842
Yadav SS, Prasad SB, Das M, Kumari S, Pandey LK, Sing S, et al. Epigenetic silencing of CXCR4 promotes loss of cell adhesion in cervical cancer. Biomed Res Int. 2014;2014:581403. https://doi.org/10.1155/2014/581403 PMid:25114911
Meng Y, Liang H, Hu J, Liu S, Hao X, Wong MS, et al. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer. 2018;9(16):2938-45. https://doi.org/10.7150/jca.22532 PMid:30123362
Gu X, Dong M, Liu Z, Mi Y, Yang J, Zhang Z, et al. Elevated PD-L1 expression predicts poor survival outcomes in patients with cervical cancer. Cancer Cell Int. 2019;19:146. https://doi.org/10.1186/s12935-019-0861-7 PMid:31143091
Dai Y, Tong R, Guo H, Yu T, Wang C. Association of CXCR4, CCR7, VEGF-C and VEGF-D expression with lymph node metastasis in patients with cervical cancer. Eur J Obstet Gynecol Reprod Biol. 2017;214:178-83. https://doi.org/10.1016/j.ejogrb.2017.04.043 PMid:28535405
Kodama J, Kusumoto T, Seki N, Matsuo T, Ojima Y, Nakamura K, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70-6. https://doi.org/10.1093/annonc/mdl342 PMid:17032700
Huang Y, Zhang J, Cui ZM, Zhao J, Zheng Y. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer. Chin J Cancer. 2013;32(5):289-96. https://doi.org/10.5732/cjc.012.10063 PMid:22958742
Lecavalier-Barsoum M, Chaudary N, Han K, Koritzinsky M, Hill R, Milosevic M. Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int J Cancer. 2018;143(5):1017-28. https://doi.org/10.1002/ijc.31297 PMid:29417588
Wang Y, Li G. PD-1/PD-L1 blockade in cervical cancer: Current studies and perspectives. Front Med. 2019;13(4):438-50. https://doi.org/10.1007/s11684-018-0674-4 PMid:30826965
Scala S. Molecular pathways: Targeting the CXCR4-CXCL12 axis-untapped potential in the tumor microenvironment. Clin Cancer Res. 2015;21(19):4278-85. https://doi.org/10.1158/1078-0432.CCR-14-0914 PMid:26199389
Downloads
Published
How to Cite
License
Copyright (c) 2020 Bhayu Chandra Purnomo, Birgitta M. Dewayani, Sri Suryanti, Bethy S. Hernowo (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0