Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio as an Inflammatory Biomarker in Predicting the Severity of Secondary Brain Injury: A Review Article
DOI:
https://doi.org/10.3889/oamjms.2020.4789Keywords:
Secondary brain injury, Neutrophil-to-lymphocyte ratio, Platelet-to-lymphocyte ratio, Inflammatory reactionsAbstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, which affects millions of people globally with a significant economic burden. The inflammatory reactions and immune system activity play a significant role in the severity development of secondary brain injury (SBI) after a TBI event. Neutrophils, platelets, and lymphocytes are involved in these inflammatory reactions and have potential in reflecting the severity level of SBI that occurred post-TBI. Some recent studies have shown that the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) can be used as a potential biomarker for determining the severity of an inflammatory reaction, including SBIs in post-TBI. However, the results of NLR and PLR in TBI patients in daily medical practice are still not fully utilized. This review summarizes the neutrophil’s, platelet’s, and lymphocyte’s role in SBI, also the NLR and PLR potential as a marker of the severity of the SBI process in TBI cases.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231-6. https://doi.org/10.1038/nrneurol.2013.22 PMid:23443846
Shi HY, Hwang SL, Lee KT, Lin CL. Temporal trends and volume-outcome associations after traumatic brain injury: A 12-year study in Taiwan. J Neurosurg. 2013;118(4):732-8. https://doi.org/10.3171/2012.12.jns12693 PMid:23350773
Williams OH, Tallantyre EC, Robertson NP. Traumatic brain injury: Pathophysiology, clinical outcome and treatment. J Neurol. 2015;262(5):1394-6. https://doi.org/10.1007/s00415-015-7741-4 PMid:25904204
Werner JK, Stevens RD. Traumatic brain injury: Recent advances in plasticity and regeneration. Curr Opin Neurol.2015;28(6):565-73. https://doi.org/10.1186/s12974-018-1173-x PMid:26544030
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): Friend or foe? J Neuroinflammation. 2018;15(1):146. PMid:29776443
Walsh KB, Sekar P, Langefeld CD, Moomaw CJ, Elkind MS, Boehme AK, et al. Monocyte count and 30-day case fatality in intracerebral hemorrhage. Stroke. 2015;46(8):2302-4. https://doi.org/10.1161/strokeaha.115.009880 PMid:26130090
Pan L, Du J, Li T, Liao H. Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio associated with disease activity in patients with takayasu’s arteritis: A case-control study. BMJ Open. 2017;7(4):e014451. https://doi.org/10.1136/bmjopen-2016-014451 PMid:28473512
Azab B, Shah N, Akerman M, McGinn JT Jr. Value of platelet/lymphocyte ratio as a predictor of all-cause mortality after non-ST-elevation myocardial infarction. J Thromb Thrombolysis. 2012;34(3):326-34. https://doi.org/10.1007/s11239-012-0718-6 PMid:22466812
Yin Y, Wang J, Wang X, Gu L, Pei H, Kuai S, et al. Prognostic value of the neutrophil to lymphocyte ratio in lung cancer: A meta-analysis. Clinics. 2015;70(7):524-30. https://doi.org/10.6061/clinics/2015(07)10
Tao C, Hu X, Wang J, Ma J, Li H, You C. Admission neutrophil count and neutrophil to lymphocyte ratio predict 90-day outcome in intracerebral hemorrhage. Biomark Med. 2017;11(1):33-42. https://doi.org/10.2217/bmm-2016-0187 PMid:27917647
Wang F, Wang L, Jiang TT, Xia JJ, Xu F, Shen LJ, et al. Neutrophil-to-lymphocyte ratio is an independent predictor of 30-day mortality of intracerebral hemorrhage patients: A validation cohort study. Neurotox Res. 2018;34(3):347-52. https://doi.org/10.1007/s12640-018-9890-6 PMid:29594812
Murthy T, Bhatia P, Sandhu K, Prabhakar T, Gogna RL. Secondary brain injury: Prevention and intensive care management. Indian J Neurotrauma. 2005;2(1):7-12. https://doi.org/10.1016/s0973-0508(05)80004-8
Moppett IK. Traumatic brain injury: Assessment, resuscitation and early management. Br J Anaesth. 2007;99(1):18-31. https://doi.org/10.1093/bja/aem128 PMid:17545555
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke. 2011;42(6):1781-6. https://doi.org/10.1161/strokeaha.110.596718 PMid:21527759
Hazeldine J, Hampson P, Lord JM. The impact of trauma on neutrophil function. Injury. 2014;45(12):1824-33. https://doi.org/10.1016/j.injury.2014.06.021 PMid:25106876
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med. 2012;367(24):2322-33. https://doi.org/10.1056/nejmra1205750 PMid:23234515
Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest. 2010;120(5):1368-79. https://doi.org/10.1172/jci41911 PMid:20440079
Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4-9. PMid:17573392
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-41. https://doi.org/10.1038/nature14432 PMid:26030524
Hazeldine J, Lord JM, Belli A. Traumatic brain injury and peripheral immune suppression: Primer and prospectus. Front Neurol. 2015;6:235. https://doi.org/10.3389/fneur.2015.00235 PMid:26594196
Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-31. https://doi.org/10.1038/nri3024 PMid:21785456
da Silva FM, Massart-Leen AM, Burvenich C. Development and maturation of neutrophils. Vet Q. 1994;16(4):220-5. https://doi.org/10.1080/01652176.1994.9694452 PMid:7740747
Beyrau M, Bodkin JV, Nourshargh S. Neutrophil heterogeneity in health and disease: A revitalized avenue in inflammation and immunity. Open Biol. 2012;2(11):120134. https://doi.org/10.1098/rsob.120134 PMid:23226600
Khajah M, Millen B, Cara DC, Waterhouse C, McCafferty DM. Granulocyte-macrophage colony-stimulating factor (GM-CSF): A chemoattractive agent for murine leukocytes in vivo. J Leukoc Biol. 2011;89(6):945-53. https://doi.org/10.1189/jlb.0809546 PMid:21393420
Cowland JB, Borregaard N. The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J Leukoc Biol. 1999;66(6):989-95. https://doi.org/10.1002/jlb.66.6.989 PMid:10614782
Min H, Hong J, Cho IH, Jang YH, Lee H, Kim D, et al. TLR2-induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models. Mol Brain. 2015;8:23. https://doi.org/10.1186/s13041-015-0116-z PMid:25879213
Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma. 2005;22(8):885-95. https://doi.org/10.1089/neu.2005.22.885 PMid:16083355
Johnson EA, Dao TL, Guignet MA, Geddes CE, Koemeter-Cox AI, Kan RK. Increased expression of the chemokines CXCL1 and MIP-1alpha by resident brain cells precedes neutrophil infiltration in the brain following prolonged soman-induced status epilepticus in rats. J Neuroinflammation. 2011;8:41. https://doi.org/10.1186/1742-2094-8-41 PMid:21535896
Allport JR, Ding H, Collins T, Gerritsen ME, Luscinskas FW. Endothelial-dependent mechanisms regulate leukocyte transmigration: A process involving the proteasome and disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J Exp Med. 1997;186(4):517-27. https://doi.org/10.1084/jem.186.4.517 PMid:9254650
Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience. 1998;86(4):1245-57. https://doi.org/10.1016/s0306-4522(98)00058-x PMid:9697130
Grossetete M, Phelps J, Arko L, Yonas H, Rosenberg GA. Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery. 2009;65(4):702-8. https://doi.org/10.1227/01.neu.0000351768.11363.48 PMid:19834375
Hayashi T, Kaneko Y, Yu S, Bae E, Stahl CE, Kawase T, et al. Quantitative analyses of matrix metalloproteinase activity after traumatic brain injury in adult rats. Brain Res. 2009;1280:172-7. https://doi.org/10.1016/j.brainres.2009.05.040 PMid:19464272
Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348-64. PMid:19241241
Liu X, Sui B, Sun J. Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo: Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials. 2017;121:64-82. https://doi.org/10.1016/j.biomaterials.2017.01.006 PMid:28081460
Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28(9):3301-13. https://doi.org/10.1097/00003246-200009000-00032 PMid:11008996
Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72(3):236-9. https://doi.org/10.1007/bf00691095 PMid:3564903
Edens HA, Parkos CA. Neutrophil transendothelial migration and alteration in vascular permeability: Focus on neutrophilderived azurocidin. Curr Opin Hematol. 2003;10(1):25-30. https://doi.org/10.1097/00062752-200301000-00005 PMid:12483108
Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res. 2010;33(7):703-7. https://doi.org/10.1038/hr.2010.58 PMid:20485441
De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069-74. https://doi.org/10.1084/jem.192.7.1069 PMid:11015447
Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005;201(1):105-15. https://doi.org/10.1084/jem.20040624 PMid:15630139
Taylor PR, Roy S, Leal SM Jr., Sun Y, Howell SJ, Cobb BA, et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol. 2014;15(2):143-51. https://doi.org/10.1038/ni.2797 PMid:24362892
Chang JJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, et al. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37(1):283-90. https://doi.org/10.1097/ccm.0b013e318192fbd7 PMid:19050612
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191-201. https://doi.org/10.1016/j.bbi.2012.06.008 PMid:22728326
Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P. A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol. 2006;177(11):8103-10. https://doi.org/10.4049/jimmunol.177.11.8103 PMid:17114485
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol. 2016;275(3):316-27. https://doi.org/10.1016/j.expneurol.2015.08.018 PMid:26342753
Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, et al. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPSinduced microglia activation. Glia. 2005;52(1):78-84. https://doi.org/10.1002/glia.20225 PMid:15920727
Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, et al. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J. 2013;27(3):1176-90. https://doi.org/10.1096/fj.12-222257 PMid:23207546
McPherson CA, Merrick BA, Harry GJ. In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res. 2014;25(1):45-56. https://doi.org/10.1007/s12640-013-9422-3 PMid:24002884
Kalish H, Phillips TM. Application of immunoaffinity capillary electrophoresis to the measurements of secreted cytokines by cultured astrocytes. J Sep Sci. 2009;32(10):1605-12. https://doi.org/10.1002/jssc.200900047 PMid:19472286
Pineau I, Sun L, Bastien D, Lacroix S. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun. 2010;24(4):540-53. https://doi.org/10.1016/j.bbi.2009.11.007 PMid:19932745
Fang J, Han D, Hong J, Tan Q, Tian Y. The chemokine, macrophage inflammatory protein-2gamma, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation. 2012;9:267. https://doi.org/10.1186/1742-2094-9-267 PMid:23234294
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103-20 https://doi.org/10.1016/j.pneurobio.2015.09.008 PMid:26455456
Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation. 2000;7(3):153-9. https://doi.org/10.1159/000026433 PMid:10754403
Luheshi NM, Kovacs KJ, Lopez-Castejon G, Brough D, Denes A. Interleukin-1alpha expression precedes IL-1beta after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation. 2011;8:186. https://doi.org/10.1186/1742-2094-8-186 PMid:22206506
Mesples B, Fontaine RH, Lelievre V, Launay JM, Gressens P. Neuronal TGF-beta1 mediates IL-9/mast cell interaction and exacerbates excitotoxicity in newborn mice. Neurobiol Dis. 2005;18(1):193-205. https://doi.org/10.1016/j.nbd.2004.09.018 PMid:15649710
Fortin CF, Ear T, McDonald PP. Autocrine role of endogenous interleukin-18 on inflammatory cytokine generation by human neutrophils. FASEB J. 2009;23(1):194-203. https://doi.org/10.1096/fj.08-110213 PMid:18780764
Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, et al. Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946-50. https://doi.org/10.1038/nm.1999 PMid:19648929
Omatsu T, Cepinskas G, Clarson C, Patterson EK, Alharfi IM, Summers K, et al. CXCL1/CXCL8 (GROalpha/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro. Am J Physiol Endocrinol Metab. 2014;306(9):E1077-84. https://doi.org/10.1152/ajpendo.00659.2013 PMid:24619879
Rhodes JK, Sharkey J, Andrews PJ. The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma. 2009;26(4):507-25. https://doi.org/10.1089/neu.2008.0686 PMid:19210118
Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A. The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(9):1503-16. https://doi.org/10.1038/jcbfm.2009.71 PMid:19471279
Wang LY, Tu YF, Lin YC, Huang CC. CXCL5 signaling is a shared pathway of neuroinflammation and blood-brain barrier injury contributing to white matter injury in the immature brain. J Neuroinflammation. 2016;13:6. https://doi.org/10.1186/s12974-015-0474-6 PMid:26738635
Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: A focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab. 2010;30(3):459-73. https://doi.org/10.1038/jcbfm.2009.240 PMid:19904283
Imai Y, Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: Role of Iba1. Glia. 2002;40(2):164-74. https://doi.org/10.1002/glia.10149 PMid:12379904
Nguyen HX, O’Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNFalpha. J Neurochem. 2007;102(3):900-12. https://doi.org/10.1111/j.1471-4159.2007.004643.x PMid:17561941
Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina Type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39(4):1121-6. https://doi.org/10.1161/strokeaha.107.500868 PMid:18323498
Matsuo Y, Onodera H, Shiga Y, Nakamura M, Ninomiya M, Kihara T, et al. Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke. 1994;25(7):1469-75. https://doi.org/10.1161/01.str.25.7.1469 PMid:8023364
Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, et al. Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res. 2010;88(13):2847-58. https://doi.org/10.1002/jnr.22453 PMid:20653046
Semple BD, Trivedi A, Gimlin K, Noble-Haeusslein LJ. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis. 2015;74:263-80. https://doi.org/10.1016/j.nbd.2014.12.003 PMid:25497734
Au BT, Williams TJ, Collins PD. Zymosan-induced IL-8 release from human neutrophils involves activation via the CD11b/CD18 receptor and endogenous platelet-activating factor as an autocrine modulator. J Immunol. 1994;152(11):5411-9. PMid:7514637
Surette ME, Krump E, Picard S, Borgeat P. Activation of leukotriene synthesis in human neutrophils by exogenous arachidonic acid: Inhibition by adenosine A(2a) receptor agonists and crucial role of autocrine activation by leukotriene B(4). Mol Pharmacol. 1999;56(5):1055-62. https://doi.org/10.1124/mol.56.5.1055 PMid:10531413
Cho SY, Jeon YL, Kim W, Kim WS, Lee HJ, Lee WI, et al. Mean platelet volume and mean platelet volume/platelet count ratio in infective endocarditis. Platelets. 2014;25(8):559-61. https://doi.org/10.3109/09537104.2013.857394 PMid:24205785
Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: A link between thrombosis and inflammation? Curr Pharm Des. 2011;17(1):47-58. https://doi.org/10.2174/138161211795049804 PMid:21247392
Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005;115(12):3339-47. https://doi.org/10.1172/jci26674 PMid:16322778
Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354(19):2034-45. https://doi.org/10.1056/nejmra052706 PMid:16687716
Kim CH, Kim SJ, Lee MJ, Kwon YE, Kim YL, Park KS, et al. An increase in mean platelet volume from baseline is associated with mortality in patients with severe sepsis or septic shock. PLoS One. 2015;10(3):e0119437. https://doi.org/10.1371/journal.pone.0119437 PMid:25742300
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol. 2015;6:98. https://doi.org/10.3389/fimmu.2015.00098 PMid:25798138
Zhang W, Shen Y. Platelet-to-lymphocyte ratio as a new predictive index of neurological outcomes in patients with acute intracranial hemorrhage: A retrospective study. Med Sci Monit. 2018;24:4413-20. https://doi.org/10.12659/msm.910845 PMid:29946059
El Haouari M, Rosado JA. Platelet signalling abnormalities in patients with Type 2 diabetes mellitus: A review. Blood Cells Mol Dis. 2008;41(1):119-23. https://doi.org/10.1016/j.bcmd.2008.02.010 PMid:18387322
van der Loo B, Martin JF. A role for changes in platelet production in the cause of acute coronary syndromes. Arterioscler Thromb Vasc Biol. 1999;19(3):672-9. https://doi.org/10.1161/01.atv.19.3.672 PMid:10073972
Miyazaki H, Kato T. Thrombopoietin: Biology and clinical potentials. Int J Hematol. 1999;70(4):216-25. PMid:10643146
Thompson CB, Jakubowski JA. The pathophysiology and clinical relevance of platelet heterogeneity. Blood. 1988;72(1):1-8. https://doi.org/10.1182/blood.v72.1.1.bloodjournal7211 PMid:3291975
Alexandrakis MG, Passam FH, Perisinakis K, Ganotakis E, Margantinis G, Kyriakou DS, et al. Serum proinflammatory cytokines and its relationship to clinical parameters in lung cancer patients with reactive thrombocytosis. Respir Med. 2002;96(8):553-8. https://doi.org/10.1053/rmed.2002.1328 PMid:12195834
Alexandrakis MG, Passam FH, Moschandrea IA, Christophoridou AV, Pappa CA, Coulocheri SA, et al. Levels of serum cytokines and acute phase proteins in patients with essential and cancer-related thrombocytosis. Am J Clin Oncol. 2003;26(2):135-40. https://doi.org/10.1097/01.coc.0000017093.79897.de PMid:12714883
Habets KL, Trouw LA, Levarht EW, Korporaal SJ, Habets PA, de Groot P, et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):209. https://doi.org/10.1186/s13075-015-0665-7 PMid:26268317
Akboga MK, Canpolat U, Yayla C, Ozcan F, Ozeke O, Topaloglu S, et al. Association of platelet to lymphocyte ratio with inflammation and severity of coronary atherosclerosis in patients with stable coronary artery disease. Angiology. 2016;67(1):89-95. https://doi.org/10.1177/0003319715583186 PMid:25922197
Palatinus A, Adams M. Thrombosis in systemic lupus erythematosus. Semin Thromb Hemost. 2009;35(7):621-9. https://doi.org/10.1055/s-0029-1242716 PMid:20013529
Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580-3. https://doi.org/10.1126/science.1181928 PMid:20110505
Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP, Douglas KM, Kitas GD. Platelet function in rheumatoid arthritis: Arthritic and cardiovascular implications. Rheumatol Int. 2011;31(2):153-64. https://doi.org/10.1007/s00296-010-1446-x PMid:20390282
Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr Pharm Des. 2012;18(11):1478-93. https://doi.org/10.2174/138161212799504731 PMid:22364132
Colkesen Y, Muderrisoglu H. The role of mean platelet volume in predicting thrombotic events. Clin Chem Lab Med. 2012;50(4):631-4. https://doi.org/10.1515/cclm.2011.806 PMid:22112054
Thomson SP, McMahon LJ, Nugent CA. Endogenous cortisol: A regulator of the number of lymphocytes in peripheral blood. Clin Immunol Immunopathol. 1980;17(4):506-14. https://doi.org/10.1016/0090-1229(80)90146-4 PMid:7192197
Zouridakis EG, Garcia-Moll X, Kaski JC. Usefulness of the blood lymphocyte count in predicting recurrent instability and death in patients with unstable angina pectoris. Am J Cardiol. 2000;86(4):449-51. https://doi.org/10.1016/s0002-9149(00)00963-2 PMid:10946041
Niederhuber JE. Cancer vaccines: The molecular basis for T cell killing of tumor cells. Oncologist. 1997;2(5):280-3. https://doi.org/10.1634/theoncologist.2-5-280 PMid:10388060
Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis. 2003;12(3):152-9. https://doi.org/10.1016/s1052-3057(03)00036-3 PMid:17903920
Ye Z, Ai X, Fang F, Hu X, Faramand A, You C. The use of neutrophil to lymphocyte ratio as a predictor for clinical outcomes in spontaneous intracerebral hemorrhage. Oncotarget. 2017;8(52):90380-9. https://doi.org/10.18632/oncotarget.20120 PMid:29163837
Liao Y, Liu P, Guo F, Zhang ZY, Zhang Z. Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One. 2013;8(7):e68963. https://doi.org/10.1371/journal.pone.0068963 PMid:23894384
Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 2014;505(7482):223-8. https://doi.org/10.1038/nature12808 PMid:24317693
Zhou Y, Wang Y, Wang J, Stetler RA, Yang QW. Inflammation in intracerebral hemorrhage: From mechanisms to clinical translation. Prog Neurobiol. 2014;115:25-44. https://doi.org/10.1016/j.pneurobio.2013.11.003 PMid:24291544
Hu ZD, Sun Y, Guo J, Huang YL, Qin BD, Gao Q, et al. Red blood cell distribution width and neutrophil/lymphocyte ratio are positively correlated with disease activity in primary sjogren’s syndrome. Clin Biochem. 2014;47(18):287-90. https://doi.org/10.1016/j.clinbiochem.2014.08.022 PMid:25204965
Rifaioglu EN, Bülbül ŞB, Ekiz Ö, Cigdem DA. Neutrophil to lymphocyte ratio in behçet’s disease as a marker of disease activity. Acta Dermatovenerol Alp Pannonica Adriat. 2014;23(4):65-7. https://doi.org/10.15570/actaapa.2014.16z PMid:25527038
Uslu AU, Kucuk A, Sahin A, Ugan Y, Yilmaz R, Gungor T, et al. Two new inflammatory markers associated with disease activity score-28 in patients with rheumatoid arthritis: Neutrophillymphocyte ratio and platelet-lymphocyte ratio. Int J Rheum Dis. 2015;18(7):731-5. https://doi.org/10.1111/1756-185x.12582 PMid:25900081
Gao SQ, Huang LD, Dai RJ, Chen DD, Hu WJ, Shan YF. Neutrophil-lymphocyte ratio: A controversial marker in predicting Crohn’s disease severity. Int J Clin Exp Pathol. 2015;8(11):14779-85. PMid:26823804
Toprak AE, Ozlu E, Uzuncakmak TK, Yalcinkaya E, Sogut S, Karadag AS. Neutrophil/lymphocyte ratio, serum endocan, and nesfatin-1 levels in patients with psoriasis vulgaris undergoing phototherapy treatment. Med Sci Monit. 2016;22:1232-7. https://doi.org/10.12659/msm.898240 PMid:27070789
Chen W, Yang J, Li B, Peng G, Li T, Li L, et al. Neutrophil to lymphocyte ratio as a novel predictor of outcome in patients with severe traumatic brain injury. J Head Trauma Rehabil. 2018;33(1):E53-9. https://doi.org/10.1097/htr.0000000000000320 PMid:28520670
Chen J, Qu X, Li Z, Zhang D, Hou L. Peak neutrophilto- lymphocyte ratio correlates with clinical outcomes in patients with severe traumatic brain injury. Neurocrit Care. 2019;30(2):334-9. https://doi.org/10.1007/s12028-018-0622-9 PMid:30288677
Zhao JL, Du ZY, Yuan Q, Yu J, Sun YR, Wu X, et al. Prognostic value of neutrophil-to-lymphocyte ratio in predicting the 6-month outcome of patients with traumatic brain injury: A retrospective study. World Neurosurg. 2019;124:e411-6. https://doi.org/10.1016/j.wneu.2018.12.107 PMid:30610986
Kundi H, Balun A, Cicekcioglu H, Cetin M, Kiziltunc E, Cetin ZG, et al. The relation between platelet-to-lymphocyte ratio and pulmonary embolism severity index in acute pulmonary embolism. Heart Lung. 2015;44(4):340-3. https://doi.org/10.1016/j.hrtlng.2015.04.007 PMid:25998993
Cetin EH, Cetin MS, Aras D, Topaloglu S, Temizhan A, Kisacik HL, et al. Platelet to lymphocyte ratio as a prognostic marker of in-hospital and long-term major adverse cardiovascular events in ST-segment elevation myocardial infarction. Angiology. 2016;67(4):336-45. https://doi.org/10.1177/0003319715591751 PMid:26101368
Zhang F, Chen Z, Wang P, Hu X, Gao Y, He J. Combination of platelet count and mean platelet volume (COP-MPV) predicts postoperative prognosis in both resectable early and advanced stage esophageal squamous cell cancer patients. Tumour Biol. 2016;37(7):9323-31. https://doi.org/10.1007/s13277-015-4774-3 PMid:26779631
Balta S, Demirkol S, Kucuk U. The platelet lymphocyte ratio may be useful inflammatory indicator in clinical practice. Hemodial Int. 2013;17(4):668-9. https://doi.org/10.1111/hdi.12058 PMid:23763539
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Gede Febby Pratama Kusuma, Sri Maliawan, Tjokorda Gde Bagus Mahadewa, Tjokorda Gde Agung Senapathi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0