Potential Antiviral Effect of Chloroquine Therapy against SARS-CoV-2 Infection
DOI:
https://doi.org/10.3889/oamjms.2020.4854Keywords:
Chloroquine, Hydroxychloroquine, Antiviral action, Mechanism, Safety, Efficacy, SARS-CoV-2 and coronavirus disease 2019Abstract
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has affected many countries with increasing morbidity and mortality. In the absence of an effective vaccine and medication, chloroquine may be a potential choice.
AIM: This study aims to explore the role of the possible antiviral effects of chloroquine against SARS-CoV-2.
MATERIALS AND METHODS: A systematic search of studies relating to the antiviral effects against coronaviruses was conducted between January 1, 1990, and up to May 26, 2020, for relevant studies using PubMed, Scopus, and Google Scholar.
RESULTS: A total of 174 articles were initially identified. Ninety-seven papers were removed for failing to address the aim of the study. Seventy-seven full-text articles were retrieved for eligibility analysis. Ten studies focused on general inhibition of viral replication, ten evaluated its effects on angiotensin-converting enzyme 2, 19 addressed the effects on alkalizing the cellular pH, 25 concentrated on the immunomodulatory effect, two assessed the potential effects on sialic acid, and 24 explored the therapeutic outcome.
CONCLUSION: Chloroquine has promising antiviral effects on SARS-CoV-2 at different levels.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-3. https://doi.org/10.5582/bst.2020.01047 PMid:32074550.
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. PMid:32109013
Chowell G, Abdirizak F, Lee S, Lee J, Jung E, Nishiura H, et al. Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study. BMC Med. 2015;13(1):210. https://doi.org/10.1186/s12916-015-0450-0 PMid:26336062
Kang CK, Song KH, Choe PG, Park WB, Bang JH, Kim ES, et al. Clinical and epidemiologic characteristics of spreaders of middle east respiratory syndrome Coronavirus during the 2015 outbreak in Korea. J Korean Med Sci. 2017;32(5):744-9. https:// doi.org/10.3346/jkms.2017.32.5.744 PMid:28378546
Nicastri E, Petrosillo N, Ippolito G, D’Offizi G, Marchioni L, Bartoli TA, et al. National institute for the infectious diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep. 2020;12(1):8543. https://doi. org/10.4081/idr.2020.8543 PMid:32218915
Remuzzi A, Remuzzi G. COVID-19 and Italy: What next? Lancet. 2020;395(10231):1225-8. https://doi.org/10.1016/ s0140-6736(20)30627-9 PMid:32178769
Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020;20(7):773. https://doi.org/10.1016/ s1473-3099(20)30195-x PMid:32171390
Miller DK, Lenard J. Antihistaminics, local anesthetics, and other amines as antiviral agents. Proc Natl Acad Sci USA. 1981;78(6):3605-9. https://doi.org/10.1073/pnas.78.6.3605 PMid:6115382
Choudhary R, Sharma AK, Choudhary R. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: Trends, scope and relevance. New Microbes New Infect. 2020;35:100684. https://doi.org/10.1016/j. nmni.2020.100684 PMid:32322397
Meo SA, Klonoff DC, Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci. 2020;24(8):4539-47. PMid:32373993
Sarma P, Kaur H, Kumar H, Mahendru D, Avti P, Bhattacharyya A, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis. J Med Virol. 2020;92(7):776-85. https://doi. org/10.1002/jmv.25898 PMid:32297988
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID19. Int J Antimicrob Agents. 2020;55(4):105932. https://doi. org/10.1016/j.ijantimicag.2020.105932 PMid:32145363
Abdul M, Al-Bari A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70(6):1608-21. https://doi. org/10.1093/jac/dkv018 PMid:25693996
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome Coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264- 8. https://doi.org/10.1016/j.bbrc.2004.08.085 PMid:15351731
Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M, et al. Antiviral activity of chloroquine against human Coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother. 2009;53(8):3416-21. https://doi.org/10.1128/aac.01509-08 PMid:19506054
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel Coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. https://doi.org/10.1038/s41422-020-0282-0 PMid:32020029
Savarino A. Use of chloroquine in viral diseases. Lancet Infect Dis. 2011;11(9):653-4. PMid:21550312
Al-Bari MA, Al-Bari CA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1):e00293. https://doi.org/10.1002/prp2.293 PMid:28596841
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against Coronavirus: What to expect for COVID-19? Int J Antimicrob Agents. 2020;55(5):105938. https://doi.org/10.1016/j.ijantimicag.2020.105938 PMid:32171740
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279-83. https:// doi.org/10.1016/j.jcrc.2020.03.005 PMid:32173110
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal. pmed.1000097 PMid:19621072
McArthur A, Klugárová J, Yan H, Florescu S. Innovations in the systematic review of text and opinion. Int J Evid Based Healthc. 2015;13(3):188-95. https://doi.org/10.1097/ xeb.0000000000000060 PMid:26207851
Savarino A, di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67-9. https://doi.org/10.1016/s1473-3099(06)70361-9 PMid:16439323
Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300-2. https://doi.org/10.1038/cr.2012.165 PMid:23208422
Blau DM, Holmes KV. Human Coronavirus HCoV-229E enters susceptible cells via the endocytic pathway. Adv Exp Med Biol. 2001;494:193-8. https://doi.org/10.1007/978-1-4615-1325-4_31 PMid:11774468
Kono M, Tatsumi K, Imai AM, Saito K, Kuriyama T, Shirasawa H. Inhibition of human Coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK. Antiviral Res. 2008;77(2):150-2. https://doi. org/10.1016/j.antiviral.2007.10.011 PMid:18055026
Shen L, Yang Y, Ye F, Liu G, Desforges M, Talbot PJ, et al. Safe and sensitive antiviral screening platform based on recombinant human Coronavirus OC43 expressing the luciferase reporter gene. Antimicrob Agents Chemother. 2016;60(9):5492-503 https://doi.org/10.1128/aac.00814-16 PMid:27381385
Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome Coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21. https:// doi.org/10.1128/jvi.79.23.14614-14621.2005 PMid:16282461
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel Coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol. 2020;94(7):e00127. https://doi.org/10.1128/jvi.00127-20 PMid:31996437
Zhou P, Xing-Lou Y, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new Coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. PMid:32015507
Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS Coronavirus infection and spread. Virol J. 2005;2(1):69. PMid:16115318
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated Coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA. 2004;101(12):4240-5. https://doi.org/10.1073/ pnas.0306446101 PMid:15010527
Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, et al. pH-dependent entry of severe acute respiratory syndrome Coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004;78(11):5642-50. https://doi.org/10.1128/ jvi.78.11.5642-5650.2004 PMid:15140961
Danser AH, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: At Present there is no evidence to abandon renin-angiotensin system blockers. Hypertension. 2020;75(6):1382-5. https://doi.org/10.1161/ hypertensionaha.120.15082 PMid:32208987
Li W, Moore MJ, Vasllieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS Coronavirus. Nature. 2003;426(6965):450-4. https://doi. org/10.1038/nature02145 PMid:14647384
Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysisdependent manner. PLoS Pathog. 2014;10(11):e1004502. https://doi.org/10.1371/journal.ppat.1004502 PMid:25375324
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect Dis. 2003;3(11):722-7. https://doi. org/10.1016/s1473-3099(03)00806-5 PMid:14592603
Marzi A, Reinheckel T, Feldmann H. Cathepsin B and L are not required for ebola virus replication. PLoS Negl Trop Dis. 2012;6(12):e1923. https://doi.org/10.1371/journal.pntd.0001923 PMid:23236527
Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2):82-91. PMid:8278823
Tricou V, Minh NN, Pham T, Lee SJ, Farrar J, Wills B, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis. 2010;4(8):e785. https://doi.org/10.1371/journal.pntd.0000785 PMid:20706626
Gay B, Bernard E, Solignat M, Chazal N, Devaux C, Briant L. pH-dependent entry of chikungunya virus into Aedes albopictus cells. Infect Genet Evol. 2012;12(6):1275-81. https://doi. org/10.1016/j.meegid.2012.02.003 PMid:22386853
Khan M, Santhosh SR, Tiwari M, Rao PV, Parida M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in Vero cells. J Med Virol. 2010;82(5):817-24. https://doi.org/10.1002/jmv.21663 PMid:20336760
Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K. Inhibition of HIV-1 replication by hydroxychloroquine: Mechanism of action and comparison with zidovudine. Clin Ther. 1996;18(6):1080-92. https://doi.org/10.1016/ s0149-2918(96)80063-4 PMid:9001825
Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30(4):297-308. https://doi.org/10.1016/j.ijantimicag.2007.05.015 PMid:17629679
Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS Coronavirus entry into host cells through a novel clathrinand caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290-301. https://doi.org/10.1038/cr.2008.15 PMid:18227861
Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol. 1994;68(10):6523-34. https://doi.org/10.1128/ jvi.68.10.6523-6534.1994 PMid:8083990
Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A, Rouillé Y, et al. The C-terminal domain of the MERS Coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem. 2019;294(39):14406-21. https://doi.org/10.1074/jbc. ra119.008964 PMid:31399512
Randolph VB, Winkler G, Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology. 1990;174(2):450-8. https://doi. org/10.1016/0042-6822(90)90099-d PMid:2154882
Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M, et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med. 2005;202(6):817-28. https://doi.org/10.1084/jem.20051106 PMid:16157687
Garulli B, di Mario G, Sciaraffia E, Accapezzato D, Barnaba V, Castrucci MR. Enhancement of T cell-mediated immune responses to whole inactivated influenza virus by chloroquine treatment in vivo. Vaccine. 2013;31(13):1717-24. https://doi. org/10.1016/j.vaccine.2013.01.037 PMid:23380456
Pelt J, Busatto S, Ferrari M, Thompson EA, Mody K, Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther. 2018;191:43-9. https://doi. org/10.1016/j.pharmthera.2018.06.007 PMid:29932886
Wolfram J, Nizzero S, Liu H, Li F, Zhang G, Li Z, et al. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep. 2017;7(1):13738. https://doi. org/10.1038/s41598-017-14221-2 PMid:29062065
Cong Y, Hart BJ, Gross R, Zhou H, Frieman M, Bollinger L, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One. 2018;13(3):e0194868. https://doi.org/10.1371/ journal.pone.0194868 PMid:29566060
Sun Y, Tien P. From endocytosis to membrane fusion: Emerging roles of dynamin in virus entry. Crit Rev Microbiol. 2013;39(2):166- 79. https://doi.org/10.3109/1040841x.2012.694412 PMid:22737978
Barrow E, Nicola AV, Liu J. Multiscale perspectives of virus entry via endocytosis. Virol J. 2013;10:177. https://doi. org/10.1186/1743-422x-10-177 PMid:23734580
Tracey KJ, Cerami A. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45(1):491- 503. https://doi.org/10.1146/annurev.med.45.1.491 PMid:8198398
Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M, Bedjabaga I, et al. Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol. 2002;128(1):163-8. https://doi.org/10.1046/j.1365-2249.2002.01800.x PMid:11982604
Jeong JY, Choi JW, Jeon KI, Jue DM. Chloroquine decreases cell-surface expression of tumour necrosis factor receptors in human histiocytic U-937 cells. Immunology. 2002;105(1):83-91. https://doi.org/10.1046/j.0019-2805.2001.01339.x PMid:11849318
Seitz M, Valbracht J, Quach J, Lotz M. Gold sodium thiomalate and chloroquine inhibit cytokine production in monocytic THP-1 cells through distinct transcriptional and posttranslational mechanisms. J Clin Immunol. 2003;23(6):477-84. https://doi. org/10.1023/b:joci.0000010424.41475.17 PMid:15031635
Zhu X, Ertel W, Ayala A, Morrison MH, Perrin MM, Chaudry IH. Chloroquine inhibits macrophage tumour necrosis factor-alpha mRNA transcription. Immunology. 1993;80(1):122-6. PMid:8244452
Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol. 2000;165(3):1534- 40. https://doi.org/10.4049/jimmunol.165.3.1534 PMid:10903761
Jang CH, Choi JH, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharidestimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). 2006;45(6):703-10. https://doi. org/10.1093/rheumatology/kei282 PMid:16418198
Picot S, Peyron F, Donadille A, Vuillez JP, Barbe G, AmbroiseThomas P. Chloroquine-induced inhibition of the production of TNF, but not of IL-6, is affected by disruption of iron metabolism. Immunology. 1993;80(1):127-33. PMid:8244453
Jeong JY, Jue DM. Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Immunol. 1997;158(10):4901-7. PMid:9144507
Murray SM, Down CM, Boulware DR, Stauffer WM, Cavert WP, Schacker TW, et al. Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol. 2010;84(22):12082-6. https://doi.org/10.1128/jvi.01466-10 PMid:20844049
Routy JP, Angel JB, Patel M, Kanagaratham C, Radzioch D, Kema I, et al. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2015;16(1):48-56. https://doi.org/10.1111/ hiv.12171 PMid:24889179
Briant L, Robert-Hebmann V, Acquaviva C, Pelchen-MatthewsA, Marsh M, Devaux C. The protein tyrosine kinase p56lck is required for triggering NF-kappaB activation upon interaction of human immunodeficiency virus type 1 envelope glycoprotein gp120 with cell surface CD4. J Virol. 1998;72(7):6207- 14. https://doi.org/10.1128/jvi.72.7.6207-6214.1998 PMid:9621091
Martinson JA, Montoya CJ, Usuga X, Ronquillo R, Landay AL, Desai SN. Chloroquine modulates HIV-1-induced plasmacytoid dendritic cell alpha interferon: Implication for T-cell activation. Antimicrob Agents Chemother. 2010;54(2):871-81. https://doi. org/10.1128/aac.01246-09 PMid:19949061
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. https:// doi.org/10.1038/s41584-020-0372-x PMid:32034323
Kwiek JJ, Haystead TA, Rudolph J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry. 2004;43(15):4538-47. https://doi. org/10.1021/bi035923w PMid:15078100
Olofsson S, Kumlin U, Dimock K, Arnberg N. Avian influenza and sialic acid receptors: More than meets the eye? Lancet Infect Dis. 2005;5(3):184-8. https://doi.org/10.1016/ s1473-3099(05)70026-8 PMid:15766653
Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, et al. Evaluation of immunomodulators, interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB/c mice. Antivir Chem Chemother. 2006;17(5):275-84. https://doi. org/10.1177/095632020601700505 PMid:17176632
Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol. 2020;38(4):379-81. https://doi.org/10.1038/ d41587-020-00003-1 PMid:32205870
Multicenter Collaboration Group of Department of Science and Technology of Guangdong Province and Health Commission of Guangdong Province for Chloroquine in the Treatment of Novel Coronavirus Pneumonia. Expert consensus on chloroquine phosphate for the treatment of novel Coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(3):185-8. PMid:32164085
Huang J. Efficacy of Chloroquine and Lopinavir/Ritonavir in Mild/ General Novel Coronavirus (CoVID-19) Infections: A Prospective, Open-Label, Multicenter Randomized Controlled Clinical Study; 2020. https://doi.org/10.1186/s13063-020-04478-w
Dong L, Hu S, Gao J. Discovering drugs to treat Coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60. https://doi.org/10.5582/ddt.2020.01012 PMid:32147628
Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177:104762. https://doi.org/10.1016/j. antiviral.2020.104762 PMid:32147496
Administration D. EUA Hydroxychloroquine Sulphate Health Care Provider Fact Sheet, Version Date 4/27/2020 Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Hydroxychloroquine Sulfate Supplied from the Strategic National Stockpile for Treatment of Covid-19 in Certain Hospitalized Patients. Available from: https://www.dailymed. nlm.nih.gov/dailymed. [Last accessed on 2020 May 27].
Duan YJ, Liu Q, Zhao SQ, Huang F, Ren L, Liu L, et al. Trial of chloroquines in the treatment of COVID-19 and its research progress in forensic toxicology. Fa Yi Xue Za Zhi. 2020;36(2):157-63. PMid:32212512
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr. 2020;14(3):241-6. https://doi. org/10.1016/j.dsx.2020.03.011 PMid:32247211
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. https://doi. org/10.1016/j.ijantimicag.2020.105949 PMid:32205204
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis. 2020;34:101663. https://doi.org/10.1016/j.tmaid.2020.101663 PMid:32289548
Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(9):1036-41. https://doi.org/10.1001/ jamacardio.2020.1834 PMid:32356863
Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C, Boxberger M, et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog. 2020;145:104228. https://doi. org/10.1016/j.micpath.2020.104228 PMid:32344177
Bessiere F, Roccia H, Deliniere A, Charriere R, Chevalier P, Argaud L, et al. Assessment of QT intervals in a case series of patients with Coronavirus disease 2019 (COVID19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care Unit. JAMA Cardiol. 2020;5(9):1067-69. https://doi.org/10.1001/ jamacardio.2020.1787 PMid:32356858
de Wilde AH, Jochmans D, Posthuma CC, ZevenhovenDobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four smallmolecule inhibitors of middle east respiratory syndrome Coronavirus replication in cell culture. Antimicrob Agents Chemother. 201458(8):4875-84. https://doi.org/10.1128/ aac.03011-14 PMid:24841269
Mo Y, Fisher D. A review of treatment modalities for middle east respiratory syndrome. J Antimicrob Chemother. 2016;71(12):3340-50. https://doi.org/10.1093/jac/dkw338 PMid:27585965
Tétu P, Hamelin A, Lebrun-Vignes B, Soria A, Barbaud A, Francès C, et al. Prevalence of hydroxychloroquine-induced side-effects in dermatology patients: A retrospective survey of 102 patients. Ann Dermatol Venereol. 2018;145(6-7):395-404. https://doi.org/10.1016/j.annder.2018.03.168 PMid:29792286
Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: A review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care. 2020;9(3):215-21. https://doi.org/10.1177/2048872620922784 PMid:32372695
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Imad R. Musa (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0