Analysis of Uncoupling Protein 1 and β3-adrenergic Receptor Single Nucleotide Polymorphisms in Saudi Population with Type 2 Diabetes Mellitus
DOI:
https://doi.org/10.3889/oamjms.2020.4886Keywords:
Uncoupling protein type 1, Type 2 diabetes mellitus, β3-adrenergic receptor, Gene polymorphism, ThermogenesisAbstract
BACKGROUND: Uncoupling proteins (UCP) and β3-adrenergic receptor (ADRB3) gene polymorphism have been implicated in the susceptibility to type 2 diabetes mellitus (T2DM) but the results are inconsistent and inconclusive.
AIM: The aim was to investigate the relationship between -3826A/G (rs1800592) of UCP 1 and ADRB3 Trp64Arg (C/T) (rs4994) gene polymorphism and the incidence of T2DM among Saudis.
METHODS: Genotyping of both UCP1 and ADRB3 genes was carried out in 110 healthy controls and 108 unrelated Saudis with T2DM using polymerase chain reaction-based restriction fragment length polymorphism.
RESULTS: The genotype and allele frequencies of the UCP1 gene did not differ significantly between diabetic subjects and controls (p > 0.05). However, the CT genotype and the T allele of ADRB3 were higher in diabetic subjects compared with the controls while the CC genotype and C allele were higher in the controls relative to the diabetic subjects (Odds ratios [OR]: 7.85, 95% confidence interval [CI]: 4.23–14.59, p < 0.001 and OR: 7.434 95% CI: 4.026–13.39, p < 0.001, respectively).
CONCLUSION: The UCP1 -3826A/G polymorphism may not be associated with the susceptibility to T2DM among Saudis while T allele of ADRB3 may be related to the risk of T2DM, whereas the CC genotype and C allele may confer protection to T2DM.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635-43. https://doi.org/10.1038/35007508 PMid:10766250
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415-28. https://doi.org/10.1016/ S0140-6736(05)66378-7 PMid:15836891
Elhadd T, Al-Amoudi A, Alzahrani A. Epidemiology, clinical and complications profile of diabetes in Saudi Arabia: A review. Ann Saudi Med. 2007;27(4):241-50. https://doi. org/10.5144/0256-4947.2007.241 PMid:17684435
Robert AA, Al Dawish MA, Braham R, Musallam MA, Al Hayek A, Al Kahtany NH. Type 2 diabetes mellitus in Saudi Arabia: Major challenges and possible solutions. Curr Diabetes Rev. 2017;13(1):59-64. https://doi.org/10.2174/1573399812666 160126142605 PMid:26813972
Diabetes Prevention Program (DPP) Research Group. The diabetes prevention program (DPP): Description of lifestyle intervention. Diabetes Care. 2002;25(12):2165-71. https://doi. org/10.2337/diacare.25.12.2165 PMid:12453955
Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish diabetes prevention study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230-6. https://doi. org/10.2337/diacare.26.12.3230 PMid:14633807
Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, et al. Pharmacological and lifestyle interventions to prevent or delay Type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis. BMJ. 2007;334(7588):299. https://doi.org/10.1136/ bmj.39063.689375.55 PMid:17237299
Brondani LA, Assmann TS, Duarte GC, Gross JL, Canani LH, Crispim D. The role of the uncoupling protein 1 (UCP1) on the development of obesity and Type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2012;56(4):215-25. https://doi.org/10.1590/ s0004-27302012000400001 PMid:22790465
Ryuk JA, Zhang X, Ko BS. Association of β3-adrenergic receptor rs4994 polymorphisms with the risk of Type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2017;129:86-96. https://doi.org/10.1016/j.diabres.2017.03.034 PMid:28521197
Babol K, Błasiak J. Beta3-adrenergic receptor. Postepy Biochem. 2005;51(1):80-7. PMid:16209345
Cioffi F, Senese R, de Lange P, Goglia F, Lanni A, Lombardi A. Uncoupling proteins: A complex journey to function discovery. Biofactors. 2009;35(5):417-28. https://doi.org/10.1002/biof.54 PMid:19626697
Jia JJ, Tian YB, Cao ZH, Tao LL, Zhang X, Gao SZ, et al. The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Mol Biol Rep. 2010;37(3):1513-22. https:// doi.org/10.1007/s11033-009-9550-2 PMid:19444646
de Souza BM, Brondani LA, Bouças AP, Sortica DA, Kramer CK, Canani LH, et al. Associations between UCP1-3826A/G, UCP2- 866G/A, Ala55Val and Ins/Del, and UCP3 -55C/T polymorphisms and susceptibility to Type 2 diabetes mellitus: Case-control study and meta-analysis. PLoS One. 2013;8:e54259. https:// doi.org/10.1371/journal.pone.0054259
Collins S, Yehuda-Shnaidman E, Wang H. Positive and negative control of Ucp1gene transcription and the role of β-adrenergic signaling networks. Int J Obes. 2010;34(1):S28-33. https://doi. org/10.1038/ijo.2010.180 PMid:20935662
Richard D, Picard F. Brown fat biology and thermogenesis. Front Biosci (Landmark Ed). 2011;16:1233-60. https://doi. org/10.2741/3786 PMid:21196229
Bertholet AM, Kirichok Y. UCP1: A transporter for H+ and fatty acid anions. Biochimie. 2017;134:28-34. https://doi. org/10.1016/j.biochi.2016.10.013 PMid:27984203
Nakano T, Shinka T, Sei M, Sato Y, Umeno M, Sakamoto K, et al. A/G heterozygote of the A-3826G polymorphism in the UCP-1 gene has higher BMI than A/A and G/G homozygote in young Japanese males. J Med Invest. 2006;53(3-4):218-22. https://doi.org/10.2152/jmi.53.218 PMid:16953057
Hamada T, Kotani K, Nagai N, Tsuzaki K, Matsuoka Y, Sano Y, et al. Low-calorie diet-induced reduction in serum HDL cholesterol is ameliorated in obese women with the-3826 G allele in the uncoupling protein-1 gene. Tohoku J Exp Med. 2009;219(4):337-42. https://doi.org/10.1620/tjem.219.337
Nicoletti CF, de Oliveira AP, Brochado MJ, de Oliveira BP, Pinhel MA, Marchini JS, et al. UCP1-3826 A>G polymorphism affects weight, fat mass, and risk of Type 2 diabetes mellitus in grade III obese patients. Nutrition. 2016;32(1):83-7. https://doi. org/10.1016/j.nut.2015.07.016 PMid:26458326
Gagnon J, Mauriège P, Roy S, Sjöström D, Chagnon YC, Dionne FT, et al. The Trp64Arg mutation of the β3 adrenergic receptor gene has no effect on obesity phenotypes in the Québec family study and Swedish obese subjects cohorts. J Clin Invest. 1996;98(9):2086-93. https://doi.org/10.1172/JCI119014 PMid:8903328
Walston J, Silver K, Bogardus C, Knowler YC, Celi SF, Austin S, et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β 3-adrenergic receptor gene. N Engl J Med. 1995;333(6):343-7. https://doi.org/10.1056/ NEJM199508103330603 PMid:7609750
Widén E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a polymorphism in the beta 3-adrenergic receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med. 1995;333(6):348-51. https:// doi.org/10.1056/NEJM199508103330604 PMid:7609751
Clément K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med. 1995;333(6):352-4. https://doi. org/10.1056/NEJM199508103330605 PMid:7609752
Kadowaki H, Yasuda K, Iwamoto K, Otabe S, Shimokawa K, Silver K, et al. A mutation in the beta 3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. Biochem Biophys Res Commun. 1995;215(2):555-60. https://doi.org/10.1006/bbrc.1995.2500 PMid:7487991
Morita E, Taniguchi H, Sakaue M. Trp64Arg polymorphism in beta3-adrenergic receptor gene is associated with decreased fat oxidation both in resting and aerobic exercise in the Japanese male. Exp Diabetes Res. 2009;2009:605139. https:// doi.org/10.1155/2009/605139 PMid:20069060
Valve R, Heikkinen S, Rissanen A, Laakso M, Uusitupa M. Synergistic effect of polymorphisms in uncoupling protein 1 and beta3-adrenergic receptor genes on basal metabolic rate in obese Finns. Diabetologia. 1998;41(3):357-61. https://doi. org/10.1007/s001250050915 PMid:9541178
Sivenius K, Valve R, Lindi V, Niskanen L, Laakso M, Uusitupa M. Synergistic effect of polymorphisms in uncoupling Protein 1 and beta3-adrenergic receptor genes on long term body weight change in Finnish Type 2 diabetic and non-diabetic control subjects. Int J Obes Relat Metab Disord. 2000;24(4):514-9. https://doi.org/10.1038/sj.ijo.0801194 PMid:10805511
Shihara N, Yasuda K, Moritani T, Ue H, Uno M, Adachi T, et al. Synergistic effect of polymorphisms of uncoupling protein 1 and beta3-adrenergic receptor genes on autonomic nervous system activity. Int J Obes Relat Metab Disord. 2001;25(6):761-6. https://doi.org/10.1038/sj.ijo.0801629 PMid:11439286
Cassard-Doulcier AM, Bouillaud F, Chagnon M, Gelly C, Dionne FT, Oppert JM, et al. The Bcl I polymorphism of the human uncoupling protein (ucp) gene is due to a point mutation in the 5’-flanking region. Int J Obes Relat Metab Disord. 1996;20(3):278-9. PMid:8653151
Al Dawish MA, Robert AA, Braham R, Al Hayek AA, Al Saeed A, Ahmed RA, et al. Diabetes mellitus in Saudi Arabia: A review of the recent literature. Curr Diabetes Rev. 2016;12(4):359-68. https://doi.org/10.2174/1573399811666150724095130 PMid:26206092
Burguete-Garcia AI, Martinez-Nava GA, Valladares-Salgado A, Morales VH, Estrada-Velasco B, Wacher N, et al. Association of β1 and β3 adrenergic receptors gene polymorphisms with insulin resistance and high lipid profiles related to Type 2 diabetes and metabolic syndrome. Nutr Hosp. 2014;29(6):1327-34. PMid:24972470
Boullu-Sanchis S, Leprêtre F, Hedelin G, Donnet JP, Schaffer P, Froguel P, et al. Type 2 diabetes mellitus: Association study of five candidate genes in an Indian population of Guadeloupe, genetic contribution of FABP2 polymorphism. Diabetes Metab. 1999;25(2):150-6. PMid:10443326
Schäffler A, Palitzsch KD, Watzlawek E, Drobnik W, Schwer H, Schölmerich J, et al. Frequency and significance of the A-->G (-3826) polymorphism in the promoter of the gene for uncoupling protein-1 with regard to metabolic parameters and adipocyte transcription factor binding in a large population-based Caucasian cohort. Eur J Clin Invest. 1999;29(9):770-9. https://doi.org/10.1046/j.1365-2362.1999.00529.x PMid:10469165
Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, Rao MR, Mohan V. A haplotype at the UCP1 gene locus contributes to genetic risk for Type 2 diabetes in Asian Indians (CURES-72). Metab Syndr Relat Disord. 2010;8(1):63-8. https://doi. org/10.1089/met.2009.0039 PMid:19943796
Ramos AV, Bastos-Rodrigues L, Resende BA, Friedman E, Campanha-Versiani L, Miranda DM, et al. The contribution of FTO and UCP 1 SNPs to extreme obesity, diabetes and cardiovascular risk in Brazilian individuals. BMC Med Genet. 2012;13:101. https://doi.org/10.1186/1471-2350-13-101 PMid:23134754
Hameed I, Masoodi SR, Afroze D, Naykoo NA, Bhat RA, Ganai BA. Trp homozygotes at codon 64 of ADRB3 gene are protected against the risk of Type 2 diabetes in the Kashmiri population. Genet Test Mol Biomarkers. 2013;17(10):775-9. https://doi.org/10.1089/gtmb.2013.0297 PMid:23968135
Rissanen J, Kuopusjärvi J, Pihlajamäki J, Sipiläinen R, Heikkinen S, Vanhala M, et al. The Trp64Arg polymorphism of the beta 3-adrenergic receptor gene. Lack of association with NIDDM and features of insulin resistance syndrome. Diabetes Care. 1997;20(8):1319-23. https://doi.org/10.2337/ diacare.20.8.1319 PMid:9250462
Büettner R, Schäffler A, Arndt H, Rogler G, Nusser J, Zietz B, et al. The Trp64Arg polymorphism of the beta 3-adrenergic receptor gene is not associated with obesity or Type 2 diabetes mellitus in a large population-based Caucasian cohort. J Clin Endocrinol Metab. 1998;83(8):2892-7. https://doi.org/10.1210/ jcem.83.8.5004 PMid:9709965
Ishii T, Hirose H, Kawai T, Hayashi K, Maruyama H, Saito I, et al. Effects of intestinal fatty acid-binding protein gene Ala54Thr polymorphism and beta3-adrenergic receptor gene Trp64Arg polymorphism on insulin resistance and fasting plasma glucose in young to older Japanese men. Metabolism. 2001;50(11):1301- 7. https://doi.org/10.1053/meta.2001.27228 PMid:11699048
Kasznicki J, Blasiak J, Majsterek I, Przybyłowska K, Drzewoski J. The Trp64Arg beta3-adrenergic receptor amino-acid variant is not associated with overweight and Type 2 diabetes mellitus in Polish population. Exp Clin Endocrinol Diabetes. 2005;113(10):593-7. https://doi.org/10.1055/s-2005-872840 PMid:16320158
Brondani LA, Duarte GC, Canani LH, Crispim D. The presence of at least three alleles of the ADRB3 Trp64Arg(C/T) and UCP1-3826A/G polymorphisms is associated with protection to overweight/obesity and with higher high-density lipoprotein cholesterol levels in Caucasian-Brazilian patients with Type 2 diabetes. Metab Syndr Relat Disord. 2014;12(1):16-24. https:// doi.org/10.1089/met.2013.0077 PMid:24138564
Downloads
Published
How to Cite
License
Copyright (c) 2020 Fathy М. Elfasakhany, Abdulah M. Karawagh, Shahid S. Siddiqui, Magdi A. Eldamarawi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0