Fracture Resistance of Aged Full-Coverage All-Ceramic Zirconia and Metal-Ceramic Restorations of Implant-Supported Fixed Partial Dentures

Authors

  • Fariborz Vafaee Department of Prosthodontics, Dental Implants Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
  • Amirarsalan Hooshyarfard Department of Periodontics, Dental Research Center, Dental Implants Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
  • Armaghan Shahbazi Department of Prosthodontics, Dental Implants Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
  • Farnoush Fotovat Department of Prosthodontics, Dental Implants Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
  • Masoumeh Khoshhal Private Periodontist, Hamadan, Iran
  • Shamsodin Heydari Private Dentist, Hamadan, Iran

DOI:

https://doi.org/10.3889/oamjms.2020.4919

Keywords:

Fatigue, Zirconium oxide, Fracture strength, Metal-ceramic restorations

Abstract

BACKGROUND: Metal-ceramics restorations were considered a preferable option for fabrication fixed partial dentures (FPDs) that have an acceptable durability, but they are not able to provide the same beauty as the entire ceramic material. Full-contour zirconia, such as Zolid, does not have problems with chipping of layered zirconia, along with translucency and staining capabilities.

AIM: This study aimed to assess the fatigue fracture strength of three-unit implant-supported full-contour zirconia and metal-ceramics posterior FPDs.

MATERIALS AND METHODS: In this in vitro study, 24 posterior three-unit implant-supported FPDs were fabricated of full-contour zirconia and metal-ceramics and were cemented on implant abutments. To simulate the oral environment, FPDs were subjected to 10,000 thermal cycles between 5 and 55°C for 30 s and were then transferred to a chewing simulator (100,000 cycles, 50 N, 0.5 Hz). Afterward, fatigue fracture strength was measured using a universal testing machine. Data were analyzed using an independent sample t-test.

RESULTS: The obtained results showed that the mean and standard deviation of fatigue fracture strength was higher for the metal-ceramics group (2567.8 ± 689.7 N) compared to those for the full-coverage zirconia group (2108.6 ± 455.2 N). However, the difference was not statistically significant (p ˃ 0.05).

CONCLUSIONS: Fracture resistance due to fatigue in the metal-ceramics group was not significantly different from full-coverage zirconia group. Full-coverage zirconia seems promising as a metal-ceramics material for the fabrication of posterior three-unit FPDs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005;21(5):476-82. https://doi.org/10.1016/j.dental.2004.07.013 PMid:15826705

Raigrodski AJ, Chiche GJ. The safety and efficacy of anterior ceramic fixed partial dentures: A review of the literature. J Prosthet Dent. 2001;86(5):520-5. https://doi.org/10.1067/ mpr.2001.120111 PMid:11725280

Harder S, Wolfart S, Eschbach S, Kern M. Eight-year outcome of posterior inlay-retained all-ceramic fixed dental prostheses. J Dent. 2010;38(11):875-81. https://doi.org/10.1016/j. jdent.2010.07.012 PMid:20691750

Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci. 2010;52(4):531-9. https:// doi.org/10.2334/josnusd.52.531 PMid:21206154

Land MF, Hopp CD. Survival rates of all-ceramic systems differ by clinical indication and fabrication method. J Evid Based Dent Pract. 2010;10(1):37-8. https://doi.org/10.1016/j. jebdp.2009.11.013 PMid:20230965

Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J Prosthet Dent. 2004;92(6):557-62. https://doi.org/10.1016/j. prosdent.2004.09.015 PMid:15583562

Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater. 2007;23(1):106-14. https://doi. org/10.1016/j.dental.2005.12.008 PMid:16473402

Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289-96. https:// doi.org/10.14219/jada.archive.2006.0389 PMid:16946436

Anusavice KJ. Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. Dent Mater. 2012;28(1):102-11. https://doi. org/10.1016/j.dental.2011.09.012 PMid:22192254

Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24(3):299-307. https://doi. org/10.1016/j.dental.2007.05.007 PMid:17659331

Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20(4):383-8. PMid:17695869

Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28(4):449-56. https://doi.org/10.1016/j. dental.2011.11.024 PMid:22196898

Rinke S, Fischer C. Range of indications for translucent zirconia modifications: Clinical and technical aspects. Quintessence Int. 2013;44(8):557-66. PMid:23772439

Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, et al. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater. 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014 PMid:24762856

Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: An in vitro study. Int J Prosthodont. 2014;27(3):264-6. https://doi.org/10.11607/ ijp.3815 PMid:24905268

Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014;72(2):145-53. https://doi.org/10.3109/000 16357.2013.822098 PMid:23865549

Baldassarri M, Zhang Y, Thompson VP, Rekow ED, Stappert CF. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques. J Dent. 2011;39(7):489-98. https://doi.org/10.1016/j. jdent.2011.04.006 PMid:21557985

Bonfante EA, Coelho PG, Navarro JM Jr., Pegoraro LF, Bonfante G, Thompson VP, et al. Reliability and failure modes of implant-supported Y-TZP and MCR three-unit bridges. Clin Implant Dent Relat Res. 2010;12(3):235-43. https://doi. org/10.1111/j.1708-8208.2009.00156.x PMid:19416277

Eroglu Z, Gurbulak AG. Fatigue behavior of zirconia-ceramic, galvano-ceramic, and porcelain-fused-to-metal fixed partial dentures. J Prosthodont. 2013;22(7):516-22. https://doi. org/10.1111/jopr.12059 PMid:23735078

Li Y, Carrera C, Chen R, Li J, Chen Y, Lenton P, et al. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression. Dent Mater. 2015;31(7):778-88. https://doi. org/10.1016/j.dental.2015.03.014 PMid:25958269

Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent Mater. 2006;22(2):176-82. https:// doi.org/10.1016/j.dental.2005.04.024 PMid:16039706

Limmer B, Sanders AE, Reside G, Cooper LF. Complications and patient-centered outcomes with an implant-supported monolithic zirconia fixed dental prosthesis: 1 year results. J Prosthodont. 2014;23(4):267-75. https://doi.org/10.1002/9781119115397. ch18 PMid:24393461

Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent. 2007;98(2):120-8. https://doi.org/10.1016/s0022-3913(07)60045-66 PMid:17692593

Ahmed WM, Troczynski T, McCullagh AP, Wyatt CC, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent. 2019;31(5):423-30. https://doi.org/10.1111/jerd.12492 PMid:31140674

Vafaee F, Firouz F, Khoshhal M, Hooshyarfard A, Shahbazi A, Roshanaei G. Fatigue fracture strength of implant-supported full contour zirconia and metal ceramic fixed partial dentures. J Dent (Tehran). 2017;14(3):165-72. PMid:29167689

Piloto P, Alves AM, Correia A, Campos J, Fernandes J, Vaz MA, et al. Metal ceramic fixed partial denture: Fracture resistance. Biodent Eng. 2010;2010:125-8.

Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. Int J Prosthodont. 2001;14(3):231-8. PMid:11484570

Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral Rehabil. 2001;28(4):361-9. https://doi. org/10.1046/j.1365-2842.2001.00742.x PMid:11350590

Yoon JW, Kim SH, Lee JB, Han JS, Yang JH. A study on the fracture strength of collarless metal-ceramic fixed partial dentures. J Adv Prosthodont. 2010;2(4):134-41. https://doi. org/10.4047/jap.2010.2.4.134 PMid:21264192

Downloads

Published

2020-10-04

How to Cite

1.
Vafaee F, Hooshyarfard A, Shahbazi A, Fotovat F, Khoshhal M, Heydari S. Fracture Resistance of Aged Full-Coverage All-Ceramic Zirconia and Metal-Ceramic Restorations of Implant-Supported Fixed Partial Dentures. Open Access Maced J Med Sci [Internet]. 2020 Oct. 4 [cited 2024 Nov. 24];8(D):198-202. Available from: https://oamjms.eu/index.php/mjms/article/view/4919

Issue

Section

Prosthodontics

Categories