Fracture Resistance of Aged Full-Coverage All-Ceramic Zirconia and Metal-Ceramic Restorations of Implant-Supported Fixed Partial Dentures
DOI:
https://doi.org/10.3889/oamjms.2020.4919Keywords:
Fatigue, Zirconium oxide, Fracture strength, Metal-ceramic restorationsAbstract
BACKGROUND: Metal-ceramics restorations were considered a preferable option for fabrication fixed partial dentures (FPDs) that have an acceptable durability, but they are not able to provide the same beauty as the entire ceramic material. Full-contour zirconia, such as Zolid, does not have problems with chipping of layered zirconia, along with translucency and staining capabilities.
AIM: This study aimed to assess the fatigue fracture strength of three-unit implant-supported full-contour zirconia and metal-ceramics posterior FPDs.
MATERIALS AND METHODS: In this in vitro study, 24 posterior three-unit implant-supported FPDs were fabricated of full-contour zirconia and metal-ceramics and were cemented on implant abutments. To simulate the oral environment, FPDs were subjected to 10,000 thermal cycles between 5 and 55°C for 30 s and were then transferred to a chewing simulator (100,000 cycles, 50 N, 0.5 Hz). Afterward, fatigue fracture strength was measured using a universal testing machine. Data were analyzed using an independent sample t-test.
RESULTS: The obtained results showed that the mean and standard deviation of fatigue fracture strength was higher for the metal-ceramics group (2567.8 ± 689.7 N) compared to those for the full-coverage zirconia group (2108.6 ± 455.2 N). However, the difference was not statistically significant (p ˃ 0.05).
CONCLUSIONS: Fracture resistance due to fatigue in the metal-ceramics group was not significantly different from full-coverage zirconia group. Full-coverage zirconia seems promising as a metal-ceramics material for the fabrication of posterior three-unit FPDs.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater. 2005;21(5):476-82. https://doi.org/10.1016/j.dental.2004.07.013 PMid:15826705
Raigrodski AJ, Chiche GJ. The safety and efficacy of anterior ceramic fixed partial dentures: A review of the literature. J Prosthet Dent. 2001;86(5):520-5. https://doi.org/10.1067/ mpr.2001.120111 PMid:11725280
Harder S, Wolfart S, Eschbach S, Kern M. Eight-year outcome of posterior inlay-retained all-ceramic fixed dental prostheses. J Dent. 2010;38(11):875-81. https://doi.org/10.1016/j. jdent.2010.07.012 PMid:20691750
Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci. 2010;52(4):531-9. https:// doi.org/10.2334/josnusd.52.531 PMid:21206154
Land MF, Hopp CD. Survival rates of all-ceramic systems differ by clinical indication and fabrication method. J Evid Based Dent Pract. 2010;10(1):37-8. https://doi.org/10.1016/j. jebdp.2009.11.013 PMid:20230965
Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J Prosthet Dent. 2004;92(6):557-62. https://doi.org/10.1016/j. prosdent.2004.09.015 PMid:15583562
Studart AR, Filser F, Kocher P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater. 2007;23(1):106-14. https://doi. org/10.1016/j.dental.2005.12.008 PMid:16473402
Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289-96. https:// doi.org/10.14219/jada.archive.2006.0389 PMid:16946436
Anusavice KJ. Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. Dent Mater. 2012;28(1):102-11. https://doi. org/10.1016/j.dental.2011.09.012 PMid:22192254
Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24(3):299-307. https://doi. org/10.1016/j.dental.2007.05.007 PMid:17659331
Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont. 2007;20(4):383-8. PMid:17695869
Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28(4):449-56. https://doi.org/10.1016/j. dental.2011.11.024 PMid:22196898
Rinke S, Fischer C. Range of indications for translucent zirconia modifications: Clinical and technical aspects. Quintessence Int. 2013;44(8):557-66. PMid:23772439
Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, et al. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater. 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014 PMid:24762856
Zesewitz TF, Knauber AW, Nothdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: An in vitro study. Int J Prosthodont. 2014;27(3):264-6. https://doi.org/10.11607/ ijp.3815 PMid:24905268
Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014;72(2):145-53. https://doi.org/10.3109/000 16357.2013.822098 PMid:23865549
Baldassarri M, Zhang Y, Thompson VP, Rekow ED, Stappert CF. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques. J Dent. 2011;39(7):489-98. https://doi.org/10.1016/j. jdent.2011.04.006 PMid:21557985
Bonfante EA, Coelho PG, Navarro JM Jr., Pegoraro LF, Bonfante G, Thompson VP, et al. Reliability and failure modes of implant-supported Y-TZP and MCR three-unit bridges. Clin Implant Dent Relat Res. 2010;12(3):235-43. https://doi. org/10.1111/j.1708-8208.2009.00156.x PMid:19416277
Eroglu Z, Gurbulak AG. Fatigue behavior of zirconia-ceramic, galvano-ceramic, and porcelain-fused-to-metal fixed partial dentures. J Prosthodont. 2013;22(7):516-22. https://doi. org/10.1111/jopr.12059 PMid:23735078
Li Y, Carrera C, Chen R, Li J, Chen Y, Lenton P, et al. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression. Dent Mater. 2015;31(7):778-88. https://doi. org/10.1016/j.dental.2015.03.014 PMid:25958269
Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent Mater. 2006;22(2):176-82. https:// doi.org/10.1016/j.dental.2005.04.024 PMid:16039706
Limmer B, Sanders AE, Reside G, Cooper LF. Complications and patient-centered outcomes with an implant-supported monolithic zirconia fixed dental prosthesis: 1 year results. J Prosthodont. 2014;23(4):267-75. https://doi.org/10.1002/9781119115397. ch18 PMid:24393461
Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent. 2007;98(2):120-8. https://doi.org/10.1016/s0022-3913(07)60045-66 PMid:17692593
Ahmed WM, Troczynski T, McCullagh AP, Wyatt CC, Carvalho RM. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J Esthet Restor Dent. 2019;31(5):423-30. https://doi.org/10.1111/jerd.12492 PMid:31140674
Vafaee F, Firouz F, Khoshhal M, Hooshyarfard A, Shahbazi A, Roshanaei G. Fatigue fracture strength of implant-supported full contour zirconia and metal ceramic fixed partial dentures. J Dent (Tehran). 2017;14(3):165-72. PMid:29167689
Piloto P, Alves AM, Correia A, Campos J, Fernandes J, Vaz MA, et al. Metal ceramic fixed partial denture: Fracture resistance. Biodent Eng. 2010;2010:125-8.
Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. Int J Prosthodont. 2001;14(3):231-8. PMid:11484570
Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral Rehabil. 2001;28(4):361-9. https://doi. org/10.1046/j.1365-2842.2001.00742.x PMid:11350590
Yoon JW, Kim SH, Lee JB, Han JS, Yang JH. A study on the fracture strength of collarless metal-ceramic fixed partial dentures. J Adv Prosthodont. 2010;2(4):134-41. https://doi. org/10.4047/jap.2010.2.4.134 PMid:21264192
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Fariborz Vafaee , Amirarsalan Hooshyarfard , Armaghan Shahbazi, Farnoush Fotovat , Masoumeh Khoshhal , Shamsodin Heydari (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0