Antifibrotic Activity of Phaleria macrocarpa Extract in Rat Liver-fibrosis Model: Focus on Oxidative Stress Markers, TGF-β1 and MMP-13

Authors

  • Bantari W. K. Wardhani Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
  • Nanik Sundari Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
  • Raymond R. Tjandrawinata Dexa Laboratories of Biomolecular Sciences Unit, Dexa Medica Group, Cikarang, West Java, Indonesia
  • Ahmad Aulia Jusuf Department of Histology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
  • Vivian Soetikno Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
  • Melva Louisa Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.4929

Keywords:

Liver fibrosis, Phaleria macrocarpa, TGF-Beta1, MMP-13, oxidative stress

Abstract

AIM: This study was aimed to determine the antifibrotic activity of Phaleria macrocarpa (PM) extract in liver fibrosis (LF) and its possible mechanism in the rat model.

METHODS: Sprague Dawley male rats were injected with 2 mL/kg BW of carbon tetrachloride intraperitoneally twice a week for 2 weeks, followed by 1 mL/kg BW for 6 weeks. Afterward, the treatments began from the 3rd week: Silymarin 100 mg/kg BW/day, standardized PM extract (Proliverenol) 75 or 150 mg/kg BW/day orally. Rats were sacrificed in the 8th week. Blood and liver were collected to analyze liver function, liver damage and fibrosis marker, oxidative stress markers, pro-fibrogenic cytokine, and antifibrotic marker.

RESULTS: Our study showed that the treatment of silymarin and PM resulted in the normalized activity of liver function, followed by the amelioration of oxidative stress, demonstrated by the decreased malondialdehyde levels and an increased ratio of glutathione and glutathione disulfide. All markers examined showed that PM extract has antioxidant activity due to decreased hepatic stellate cell activation. We also found a decrease in tumor growth factors-β1 and protein expressions of matrix metalloproteinases-13 in all treatment groups compared to the carbon tetrachloride group. There were tendencies of the decreased fibrotic area following improvements of biochemical parameters.

CONCLUSION: PM extracts ameliorate carbon tetrachloride-induced LF. The proposed mechanism is by overcoming oxidative stress and regulating pro-fibrogenic cytokine and antifibrotic markers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cohen-Naftaly M, Friedman SL. Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap Adv Gastroenterol. 2011;4(6):391-417. https://doi. org/10.1177/1756283x11413002 PMid:22043231

Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B, et al. The immunology of fibrosis. Annu Rev Immunol. 2013;31:107-35. https://doi.org/10.1146/ annurev-immunol-032712-095937 PMid:23516981

Battaller R, Brenner A. Liver fibrosis. J Clin Invest. 2005;115(2):209-18. PMid:15690074

Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol. 2007;6:7. https://doi. org/10.1186/1476-5926-6-7 PMid:17663771

Manka P, Zeller A, Syn W. Fibrosis in chronic liver disease: An update on diagnostic and treatment modalities. Drugs. 2009;79(9):903-27. https://doi.org/10.1007/ s40265-019-01126-9 PMid:31119644

Hendra R, Ahmad S, Oskouian E, Sukari A, Shukor MY. Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff fruit. BMC Complement Altern Med. 2011;11:1-10. https://doi.org/10.1186/1472-6882-11-110 PMid:22070850

Zhang Y, Xu X, Liu H. Chemical constituents from mahkota dewa. J Asian Nat Prod Res. 2006;8(1-2):119-23. PMid:16753792

Kim WJ, Veriansyah B, Lee YW, Kim J, Kim JD. Extraction of mangiferin from mahkota dewa (Phaleria macrocarpa) using subcritical water. J Ind Eng Chem. 2010;16(3):425-30. https:// doi.org/10.1016/j.jiec.2009.08.008

Sundari N, Soetikno V, Louisa M, Wardhani BW, Tjandrawinata RR. Protective effect of Phaleria macrocarpa water extract (Proliverenol) against carbon tetrachloride-induced liver fibrosis in rats: Role of TNF-α and TGF-β 1. J Toxicol. 2018;2018:2642714. https://doi.org/10.1155/2018/2642714 PMid:30631351

Berlian G, Tjandrasasmita OM, Tjandrawinata RR. Standardized bioactive fraction of Phaleria macrocarpa (Proliverenol) prevents ethanol-induced hepatotoxicity via down-regulation of the NF-kB-TNFα-caspase-8 pathway. Asian Pac J Trop Biomed. 2016;6(8):686-91. https://doi.org/10.1016/j.apjtb.2016.06.007

Cong M, Iwasaki K, Jiang C, Kisseleva T. Cell signals influencing hepatic fibrosis. Int J Hepatol. 2012;2012:158547. PMid:22973518

Charan J, Katharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303-6. https:// doi.org/10.4103/0976-500x.119726 PMid:24250214

Hayashi H, Sakai T. Animal models for the study of liver fibrosis: New insights from knockout mouse models. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G729-38. https://doi. org/10.1152/ajpgi.00013.2011 PMid:21350186

Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodent. Methods Mol Med. 2005;117:237-50. PMid:16118456

Leclercq IA, Sempoux C, Stärkel P, Horsmans Y. Limited therapeutic efficacy of pioglitazone on progression of hepatic fibrosis in rats. Gut. 2006;55(7):1020-9. https://doi.org/10.1136/ gut.2005.079194 PMid:16484506

Truong N, Nguyen NH, Nguyen NT, Le H, Tran G, Huynh N, et al. Establishment of a standardized mouse model of hepatic fibrosis for biomedical research. Biomed Res Ther. 2014;1(2):43-9. https://doi.org/10.7603/s40730-014-0009-2

Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP. An appraisal of the histopathological assessment of liver fibrosis. Gut. 2006;55(4):569-78. https://doi.org/10.1136/ gut.2005.084475 PMid:16531536

Li L, Hu Z, Li W, Hu M, Ran J, Chen P, et al. Establishment of a standardized liver fibrosis model with different pathological stages in rats. Gastroenterol Res Pract. 2012;2012:560345. https://doi.org/10.1155/2012/560345 PMid:22761610

Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: Mechanisms and clinical relevance. Gastroenterology. 2014;147(4):765-83. https://doi. org/10.1053/j.gastro.2014.07.018 PMid:25046161

Fallatah HI. Noninvasive biomarkers of liver fibrosis: An overview. Adv Hepatol. 2014;2014:357287.

Tzeng JI, Chen MF, Chung HH, Cheng JT. Silymarin decreases connective tissue growth factor to improve liver fibrosis in rats treated with carbon tetrachloride. Phytother Res. 2013;27(7):1023-8. https://doi.org/10.1002/ptr.4829 PMid:22933420

Bona S, Filippin LI, Naso FC, David C, Valiatti B, Schaun MI, et al. effect of antioxidant treatment on fibrogenesis in rats with carbon tetrachloride-induced cirrhosis. ISRN Gastroenterol. 2012;2012:762920. https://doi.org/10.5402/2012/762920

Deng G, Wang J, Zhang Q, He H, Wu F, Feng T, et al. Hepatoprotective effects of phloridzin on hepatic fibrosis induced by carbon tetrachloride against oxidative stress-triggered damage and fibrosis in rats. Biol Pharm Bull. 2012;35(7):1118- 25. https://doi.org/10.1248/bpb.b12-00057 PMid:22791160

Tsai JH, Liu JY, Wu TT, Ho PC, Huang CY, Shyu JC, et al. Effects of silymarin on the resolution of liver fibrosis induced by carbon tetrachloride in rats. J Viral Hepat. 2008;15(7):508-14. https:// doi.org/10.1111/j.1365-2893.2008.00971.x PMid:18397225

Tuncer I, Ozbek H, Urgas S, Bayram I. Anti-fibrogenic effects of captopril and candesartan cilexetil on the hepatic fibrosis development in rat. The effect of AT1-R blocker on the hepatic fibrosis. Exp Toxicol Pathol. 2003;55(2-3):159-66. https://doi. org/10.1078/0940-2993-00309 PMid:14620537

Amin A, Ghoneim AM. Texture analysis of liver fibrosis microscopic images: A study on the effect of biomarkers. Acta Biochim Biophys Sin (Shanghai). 2011;43(3):193-203. https:// doi.org/10.1093/abbs/gmq129 PMid:21258076

Abenavoli L, Izzo A, Milic N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018;32(11):2202-13. https://doi.org/10.1002/ ptr.6171 PMid:30080294

Kheong CW, Mustapha NR, Mahadeva S. A randomized trial of silymarin for the treatment of Nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2017;15(12):1940-9.e8. https://doi. org/10.1016/j.cgh.2017.04.016 PMid:28419855

Cacciapuoti F, Scognamiglio A, Palumbo R, Forte R, Cacciapouti R. Silymarin in non alcoholic fatty liver disease. World J Hepatol. 2013;5(3):109-13. PMid:23556042

Cho YK, Yun JW, Park JH, Kim HJ, Park DII, Sohn CI, et al. Deleterious Effects of silymarin on the expression of genes controlling endothelial nitric oxide synthase activity in carbon tetrachloride-treated rat livers. Life Sci. 2009;85(7-8):281-90. https://doi.org/10.1016/j.lfs.2009.06.001 PMid:19527736

Mostafa RE, Zaki HF, Sleem AA, Salam O, Mossy FA, Kenawy SA. Pegylated interferon versus standard interferon and silymarin in treatment of liver fibrosis induced by chronic carbon tetrachloride in rats. Pharmacologia. 2013;4(3):208-17. https://doi.org/10.5567/pharmacologia.2013.208.217

Lee G, Jeong W, Jeong D, Do S, Kim T, Jeong K. Diagnostic evaluation of carbon tetrachloride-induced rat hepatic cirrhosis model. Anticancer Res. 2005;25(2A):1029-38. PMid:15868943

Zitka O, Skalickova S, Gumulec J, Mosaic M, Adam V, Hubalex J, et al. Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4(6):1247-53. https://doi.org/10.3892/ol.2012.931 PMid:23205122

Patel N, Joseph C, Corcoran GB, Ray SD. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver. Toxicol Appl Pharmacol. 2010;245(2):143-52. https://doi. org/10.1016/j.taap.2010.02.002 PMid:20144634

Fu Y, Zheng S, Lin J, Ryerse J, Cheng A. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Mol Pharmacol. 2008;73(2):399-409. https://doi.org/10.1124/mol.107.039818 PMid:18006644

Kiruthiga PV, Pandian SK, Devi KP. Silymarin protects PBMC against B(a) P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-an in vitro study. Toxicol Appl Pharmacol. 2010;247(2):116-28. https://doi. org/10.1016/j.taap.2010.06.004 PMid:20600218

Fallowfield JA. Therapeutic targets in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2011;300(5):G709-15. PMid:21233278

Liu T, Wang X, Karsdal MA, Leeming DJ, Genovese F. Molecular serum markers of liver fibrosis. Biomark Insight. 2012;7:105-17. https://doi.org/10.4137/bmi.s10009 PMid:22872786

Li CC, Hsiang CY, Wu SL, Ho TY. Identification of novel mechanisms of silymarin on the carbon tetrachloride-induced liver fibrosis in mice by nuclear factor-κB bioluminescent imaging-guided transcriptomic analysis. Food Chem Toxicol. 2012;50(5):1568-75. https://doi.org/10.1016/j.fct.2012.02.025 PMid:22386810

Iredale JP, Benyon RC, Pickering J, McCullen M, Northop M, Pawley S, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. J Clin Invest. 1998;102(3):538-48. https://doi. org/10.1172/jci1018 PMid:9691091

Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis-a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46(5):955-75. https://doi.org/10.1016/j.jhep.2007.02.003 PMid:17383048

Chen I, Chen Y, Chou C, Chuang R, Sheen L, Chiu C. Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. J Sci Food Agric. 2012;92(7):1441-7. https://doi.org/10.1002/jsfa.4723 PMid:22102319

Giannandrea M, Parkx WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech. 2014;7(2):193-203. PMid:24713275

Uchinami H. Seki E, Brenner DA, D’ArmientoJ. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology. 2006;44(2):420-9. https://doi.org/10.1002/ hep.21268Open Access Maced J Med Sci. 2020 Sep 10; 8(A):555-562. 561 PMid:16871591

Kawaguchi K, Sakaida I, Tsuchiya M, Omori K, Takami T, Okita K. Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun. 2004;315(1):187-95. https://doi.org/10.1016/j. bbrc.2004.01.038 PMid:15013444

Lichtinghagen R, Bahr MJ, Wehmeier M, Michels D, Haberkorn CI, Arndt B, et al. Expression and coordinated regulation of matrix metalloproteinases in chronic Hepatitis C and Hepatitis C virus-induced liver cirrhosis. Clin Sci (Lond). 2003;105(3):373-82. https://doi.org/10.1042/cs20030098 PMid:12760742

Endo H, Niioka M, Sugioka Y, Itoh J, Kameyama K, Okazaki I, et al. Matrix metalloproteinase-13 promotes recovery from experimental liver cirrhosis in rats. Pathobiology. 2011;78(5):239- 52. https://doi.org/10.1159/000328841 PMid:21849805

Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: Regulation by TNF-alpha and TGF-beta1. J Hepatol. 1999;30(1):48-60. https://doi.org/10.1016/ s0168-8278(99)80007-5 PMid:9927150

Downloads

Published

2020-09-10

How to Cite

1.
Wardhani BWK, Sundari N, Tjandrawinata RR, Jusuf AA, Soetikno V, Louisa M. Antifibrotic Activity of Phaleria macrocarpa Extract in Rat Liver-fibrosis Model: Focus on Oxidative Stress Markers, TGF-β1 and MMP-13. Open Access Maced J Med Sci [Internet]. 2020 Sep. 10 [cited 2022 May 19];8(A):555-62. Available from: https://oamjms.eu/index.php/mjms/article/view/4929