Tunicamycin Anticancer Drug May Reliable to Treat Coronavirus Disease-19

Authors

  • Ali Dawood Department of Anatomy, Medical Biology, College of Medicine, University of Mosul, Mosul, Iraq
  • Haitham Abdul-Malik Alnori Department of Surgery, College of Medicine, University of Mosul, Mosul, Iraq

DOI:

https://doi.org/10.3889/oamjms.2020.4954

Keywords:

Tunicamycin, Glycosylation, Virion, Coronavirus, Post-translational modification

Abstract

BACKGROUND: SARS-CoV-2 outbreaks remains a medical and economic challenge, due to the lack of a suitable drug or vaccine. The glycan in some proteins plays an important role in protein folding, sorting, transport, and oligomerization, so the hindering of N-linked glycosylation of glycoproteins will prevent assembly of the virion. Tunicamycin anticancer drug inhibits the N- linked glycan.

AIM: This study aimed to find out the mechanism action of tunicamycin on the viral glycoproteins.

RESULTS: The growth of the virus in the presence of tunicamycin conducted in the production of non-infectious and absence of spike protein (spikeless virions). Tunicamycin inhibits E2, S, and M glycoproteins of coronaviruses. Tunicamycin has also diminished glycosylation of PTMs such as HE, and 8ab of SARS-CoV. Finally,

CONCLUSION: This study recommends using this drug to treat the SARS-CoV-2.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Dawood A. Mutated COVID-19, may foretells mankind in a great risk in the future. New Microbes New Infect. 2020;35:100673. https://doi.org/10.1016/j.nmni.2020.100673 PMid:32292587

Merlieg JP, Sebbane R. Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle C. J Biol Chem. 1982;257(5):2694-701.

Locker JK, Griffiths G, Horzinek MC, Rottier PJ. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N-and O-linked glycosylation. J Biol Chem. 1992;267(20):14094-101. PMid:1629209

Lapps W, Hogue BG, Brian DA. Deduced amino acid sequence and potential O-glycosylation sites for the bovine coronavirus matrix protein. Adv Exp Med Biol. 1987;218:123-9. https://doi. org/10.1007/978-1-4684-1280-2_14 PMid:3434434

Yamada YK, Yabe M, Ohtsuki T, Taguchi F. Unique N-linked glycosylation of murine coronavirus MHV-2 membrane protein at the conserved O-linked glycosylation site. Virus Res. 2000;66(2):149-54. https://doi.org/10.1016/ s0168-1702(99)00134-3 PMid:10725548

Shiraishi T, Yoshida T, Nakata S, Horinaka M, Wakada M, Mizutani Y, et al. Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res. 2005;65(14):6364-70. https://doi.org/10.1158/0008-5472.can-05-0312 PMid:16024639

Takatsuki A, Tamura G. Inhibition of glycoconjugate biosynthesis by tunicamycin. Tunicamycin. Jap Sci Soc Pre. 1982;(3):35-70.

Han X, Zhang X, Li H, Huang S, Zhang S, Wang F, et al. Tunicamycin enhances the antitumor activity of trastuzumab on breast cancer in vitro and in vivo. Oncotarget. 2015;6(36):38912-25. https://doi.org/10.18632/oncotarget.5334 PMid:26498681

Heifetz A, Keenan RW, Elbein D. Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate GlcNAc- 1-phosphate transferase. Biocem. 1979;18(11):2186-92. https:// doi.org/10.1021/bi00578a008 PMid:444447

Niemann H, Boschek B, Evans D, Rosing M, Tamura T, Klenk HD. Post-translational glycosylation of coronavirus glycoprotein E1: Inhibition by monensin. EMBO J. 1982;1(12):1499-504. https:// doi.org/10.1002/j.1460-2075.1982.tb01346.x PMid:6327272

Luytjes W, Sturman LS, Bredenbeek PJ. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161(2):479-87. https://doi.org/10.1016/0042-6822(87)90142-5 PMid:2825419

Corse E, Machamer CE. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol. 2000;74(9):4319-26. https://doi.org/10.1128/ jvi.74.9.4319-4326.2000 PMid:10756047

Tooze SA, Tooze J, Warren GG. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol. 1988;106(5):1475-87. https:// doi.org/10.1083/jcb.106.5.1475 PMid:2836431

Holmes KV, Doller EW, Sturman LS. Tunicamycin resistant glycosylation of coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115(2):334-4. https://doi.org/10.1016/0042-6822(81)90115-x PMid:7314449

Yamada Y, Liu DX. Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol. 2009;83(17):8744-58. https://doi.org/10.1128/jvi.00613-09 PMid:19553314

Lavillette D, Barbouche R, Yao Y, Boson B, Cosset FL, Jones IM, et al. Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: Comparison with HIV envelope. J Biol Chem. 2006;281(14):9200-4. https://doi.org/10.1074/jbc. m512529200 PMid:16418166

Shen S, Tan T, Tan YJ. Expression, glycosylation, and modification of the spike (S) glycoprotein of SARS CoV. Methods Mol Biol. 2007;379:127-35. https://doi.org/10.1385/1-59745-393-5:127 PMid:17502675

Zheng J, Yamada Y, Fung TS, Huang M, Chia R, Liu DX. Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture. Virology. 2018;513:65-74. https://doi.org/10.1016/j.virol.2017.10.003 PMid:29035787

Fujieda S, Seki M, Tanaka N, Sunaga H, Ohtsubo T, Tsuzuk H, et al. Inhibition of N-linked glycosylation by tunicamycin enhances sensitivity to cisplatin in human head-and-neck carcinoma cells. Int J Cancer. 1999;80(2):279-84. https://doi.org/10.1002/ (sici)1097-0215(19990118)80:2<279::aid-ijc18>3.0.co;2-n PMid:9935211

Charley B, Lavenan L, Delmas B. Glycosylation is required for coronavirus TGEV to induce an efficient production of IFN alpha by blood mononuclear cells. Scand J Immunol. 1991;33(4):435-40. https://doi.org/10.1111/j.1365-3083.1991. tb01792.x PMid:1850168

Locker JK, Rose JK, Horzinek MC, Rottier PJ. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem. 1992;267(30):21911-8. PMid:1400501

de Haan C, de Wit M, Kuo L, Montalto-Morrison C, Haagmans B, Weiss S, et al. The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology. 2003;312(2):395-406. https://doi.org/10.1016/ s0042-6822(03)00235-6 PMid:12919744

Hogue BG, Nayak DP. Expression of the porcine transmissible gastroenteritis coronavirus M protein. Adv Exp Med Biol. 1990;276:121-6. PMid:1966402

Fung T, Liu D. Coronavirus infection, ER stress, apoptosis and innate Immunity. Front Microb. 2014;5:296. http//doi:10.3389/ fmicb.2014.00296 PMid:24987391

Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol. 1990;64(11):5367-75. https://doi.org/10.1128/ jvi.64.11.5367-5375.1990 PMid:2170676

White TC, Yi Z, Hogue BG. Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Viru Res. 2007;126(1-2):139-48. https://doi.org/10.1016/j. virusres.2007.02.008

Oostra M, Hagemeijer MC, van Gent M, Bekker CP, te Lintelo EG, Rottier PJ, et al. Topology and membrane anchoring of the coronavirus replication complex: Not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. J Virol. 2008;82(24):12392-405. https://doi.org/10.1128/jvi.01219-08 PMid:18842706

Chang C, Sue SC, Yu T. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci. 2006;13(1):59-72. PMid:16228284

Woo PC, Lau SK, Laml CS. Discovery of seven novel mammalian and avian coronaviruses in deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008. https://doi.org/10.1128/jvi.06540-11 PMid:22278237

Ritchie G, Harvey DJ, Feldmann F. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology. 2010;399(2):257-69. https://doi. org/10.1016/j.virol.2009.12.020 PMid:20129637

Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio. 2013;4(4):e00524-13. https://doi.org/10.1128/mbio.00524-13 PMid:23943763

Wong HH, Fung TS, Fang S, Huang M, Le MT, Liu DX. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology. 2017;515:165-75. https://doi.org/10.1016/j.virol.2017.12.028 PMid:29294448

Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007;466(1):8-14. https://doi.org/10.1016/j.abb.2007.07.006 PMid:17692280

Downloads

Published

2020-08-30

How to Cite

1.
Dawood A, Alnori HA-M. Tunicamycin Anticancer Drug May Reliable to Treat Coronavirus Disease-19. Open Access Maced J Med Sci [Internet]. 2020 Aug. 30 [cited 2024 Nov. 4];8(T1):129-33. Available from: https://oamjms.eu/index.php/mjms/article/view/4954