The Role of CD 34 Hematopoietic Progenitor Cells, Macrophages, and Smooth Muscle Cells in Human Coronary Artery Atherogenesis

Authors

  • Sally Said Kamel Department of Pathology, Egyptian Forensic Medicine Authority, Cairo, Egypt
  • Ahmed Mahmoud Abdel-Aziz Department of Pathology, Faculty of Medicine, Kasr AlAiny, Cairo, Egypt
  • Mostafa Mohamed Salem Department of Pathology, Faculty of Medicine, Kasr AlAiny, Cairo, Egypt
  • Hebat Allah A. Amin Department of Pathology, Egyptian Forensic Medicine Authority, Cairo, Egypt; Department of Pathology, Faculty of Medicine, Helwan University, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2020.4978

Keywords:

Atheroma, Atherosclerosis, Coronary arteries, CD34, CD68, SMA, Atheromatous plaque, Acute coronary syndrome

Abstract

BACKGROUND: Atherosclerosis is a widespread and devastating disease and one of the leading causes of death worldwide. So much is there to understand about atherosclerosis. And although a lot is already discovered, yet most of the studies are performed in cell cultures and animal models. Recent technologies for genetic engineering and imaging are mainly performed on animal models, with few studies in human tissues. A better understanding of their role is required.

AIM: We aim to study the expression of CD 34 hematopoietic progenitor stem cell, CD 68 macrophages, and smooth muscle actin (SMA)-positive smooth muscle cells (SMCs) in the human coronary arteries and correlate their differential expression with the atherosclerosis progression.

RESULTS: CD 68 and CD 34 expression increase as the atherosclerotic process proceeds from early atheroma to advanced atheroma and start to decrease as the process proceeds to fibroatheroma with a significant p < 0.001. Conversely, SMA expression decreases as the atherosclerotic process progresses with a significant p < 0.001.

CONCLUSION: CD34 progenitor cells in conjunction with CD 68 macrophages have a major role in the development of atherosclerosis, whereas the SMCs are minimal in the early stages and reach their maximal levels during the stage of fibroatheroma.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. The Top 10 Causes of Death. Geneva: World Health Organization; 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10- causes-of-death. [Last accessed on 2020 Jan 10].

Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2014;4(13):256. https://doi. org/10.21037/atm.2016.06.33 PMid:27500157

Boyle JJ. Macrophage activation in atherosclerosis: Pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol. 2005;3(1):63-8. https://doi.org/10.2174/1570161052773861 PMid:15638783

Rodríguez-Flores M, Rodríguez-Saldaña J, Cantú-Brito C, Aguirre-García J, Alejandro GG. Prevalence and severity of atherosclerosis in different arterial territories and its relation with obesity. Cardiovasc Pathol. 2013;22(5):332-8. https://doi. org/10.1016/j.carpath.2013.01.008 PMid:23465353

Hegyi L, Hardwick SJ, Siow RC. Macrophage death and the role of apoptosis in human atherosclerosis. J Hematother Stem Cell Res. 2001;10(1):27-42. PMid:11276357

Akishima Y, Akasaka Y, Ishikawa Y, Lijun Z, Kiguchi H, Ito K, et al. Role of macrophage and smooth muscle cell apoptosis in association with oxidized low-density lipoprotein in the atherosclerotic development. Mod Pathol. 2005;18(3):365-73. https://doi.org/10.1038/modpathol.3800249 PMid:15319783

Bobryshev YV, Nikiforov NG, Elizova NV, Orekhov AN. macrophages and their contribution to the development of atherosclerosis. Results Probl Cell Differ. 2017;62:273-98. https://doi.org/10.1007/978-3-319-54090-0_11 PMid:28455713

Zulli A, Buxton BF, Black MJ, Hare DL. CD34 class III positive cells are present in atherosclerotic plaques of the rabbit model of atherosclerosis. Histochem Cell Biol. 2005;124(6):517-22. https://doi.org/10.1007/s00418-005-0072-2 PMid:16177890

Murashov IS, Volkov AM, Kazanskaya GM, Kliver EE, Chernyavsky AM, Nikityuk DB, et al. Immunohistochemical features of different types of unstable atherosclerotic plaques of coronary arteries. Bull Exp Biol Med. 2018;166(1):102-6. https:// doi.org/10.1007/s10517-018-4297-1 PMid:30417299

Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129(15):1551-9. https://doi. org/10.1161/circulationaha.113.005015 PMid:24481950

Kruzliak P, Hare DL, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118(4):413-7. https://doi.org/10.1016/j.acthis.2016.04.005 PMid:27087050

Fearon WF. Is a myocardial infarction more likely to result from a mild coronary lesion or an Ischemia-producing one? Circ Cardiovasc Interv. 2011;4(6):539-41. https://doi.org/10.1161/ circinterventions.111.966416 PMid:22186104

Fishbein MC, Fishbein GA. Arteriosclerosis: Facts and fancy. Cardiovasc Pathol. 2015;24(6):335-42. https://doi.org/10.1016/j. carpath.2015.07.007 PMid:26365806

Sheaff MT, Hopster DJ. The Cardiovascular system. In: Post Mortem Technique Handbook. 2nd ed. Berlin, Germany: Springer; 2005. p. 141-79.

Schoen FJ. Blood vessels. In: Pathologic Basis of Disease. 7th ed. Philadelphia, PA: Elsevier Saunders; 2005. p. 511-54.

Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr., et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation. 1995;92(5):1355-74. https://doi.org/10.1161/01.cir.92.5.1355 PMid:7648691

Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278(5):483. https://doi. org/10.1111/joim.12406 PMid:26260307

Murphy AJ, Tall AR. Proliferating macrophages populate established atherosclerotic lesions. Circ Res. 2014;114(2):236- 8. https://doi.org/10.1161/circresaha.113.302813

Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, et al. Endothelial progenitor cells in atherosclerosis. Front Biosci. 2012;17:2327-49. PMid:22652782

van Oostrom O, Fledderus JO, de Kleijn D, Pasterkamp G, Verhaar MC. Smooth muscle progenitor cells: Friend or foe in vascular disease? Curr Stem Cell Res Ther. 2009;4(2):131-40. https://doi.org/10.2174/157488809788167454 PMid:19442197

Qingbo X. The impact of progenitor cells in atherosclerosis. Nat Clin Pract Cardiovasc Med. 2006;3(2):94-101. PMid:16446778

Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze- Osthoff K, Schaller M, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115(7):662-7. https://doi. org/10.1161/circresaha.115.304634 PMid:25070003

Chappell J, Harman JL, Narasimhan VM, Yu H, Foote K, Simons BD, et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ Res. 2016;119(12):1313-23. https://doi.org/10.1161/circresaha.116.309799 PMid:27682618

Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep. 2013;15(3):313. https://doi.org/10.1007/ s11926-012-0313-z PMid:23412688

Gimbrone MA Jr., Garcia-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22(1):9. https://doi.org/10.1016/j. carpath.2012.06.006 PMid:22818581

Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr., Daum G. The adventitia a dynamic interface containing resident progenitor cells ATVB in focus vascular cell lineage determination and differentiation. Arterioscler Thromb Vasc Biol. 2011;31(7):1530- 9. https://doi.org/10.1161/atvbaha.110.221549 PMid:21677296

Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, et al. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat Med. 2001;7:738-41. https://doi. org/10.1038/89121

Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8(4):403-9. https://doi.org/10.1038/nm0402-403 PMid:11927948

Downloads

Published

2020-08-15

How to Cite

1.
Kamel SS, Abdel-Aziz AM, Salem MM, Amin HAA. The Role of CD 34 Hematopoietic Progenitor Cells, Macrophages, and Smooth Muscle Cells in Human Coronary Artery Atherogenesis. Open Access Maced J Med Sci [Internet]. 2020 Aug. 15 [cited 2024 Jun. 30];8(A):652-9. Available from: https://oamjms.eu/index.php/mjms/article/view/4978