Pivotal Role of Both TNF-α 238G/A and TCF7L2 C/T Gene Polymorphisms in Type 2 Diabetes

Pivotal role of both TNFα 238G/A and TCF7L2 C/T gene polymorphisms in Type 2 Diabetes

Authors

  • Sahar H. El Hini Diabetes and Endocrinology Unit, Minia School of Medicine, Minia University, Minya, Egypt
  • Amira Taha Zaki Ahmed Department of Internal Medicine, Minia School of Medicine, Minia University, Minya, Egypt
  • Eglal MS. Hamed Department of Internal Medicine, Minia School of Medicine, Minia University, Minya, Egypt
  • Yehia Z. Mahmoud Department of Internal Medicine, Minia School of Medicine, Minia University, Minya, Egypt
  • Amel Mahmoud Kamal Eldin Department of Clinical Pathology, Minia School of Medicine, Minia University, Minya, Egypt
  • Hend M. Abdelghany Department of Biochemistry, Minia School of Medicine, Minia University, Minya, Egypt

DOI:

https://doi.org/10.3889/oamjms.2020.5008

Keywords:

Type 2 diabetes, Prediabetes, Genes, Insulin resistance, TNF-α G/A 238, TCF7L2 C/T gene polymorphisms

Abstract

Single nucleotide polymorphism (SNP) studies in the promoter region of tumor necrosis factor-alpha (TNF-α (238)) have suggested its role in increased insulin resistance and also in the progression from prediabetes to type 2 diabetes (T2DM). It has been reported that genetic variations in the promoter region regulate TNF-α production and transcription, and they influence susceptibility to inflammatory-related diseases. Impairment of normal functioning of the β-cells of pancreatic islets is one of the main causative factors for the suppression of insulin secretion. TNF-α is among the main stimuli that induce the inflammation in pancreatic islets which lead to the induction of apoptosis in β-cells of pancreatic islets. Transcription factor 7-like 2 (TCF7L2) gene has been found to be one of the most risky genes for prediabetes and progression toT2DM. However, the underlying mechanism of this is still unknown. This is a review article demonstrating the possible mechanisms of both TNF-α G/A 238 and TCF7L2 C/T gene polymorphisms in prediabetes and type 2 diabetes mellitus.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Xu H, Uysal KT, Becherer JD, Arner P, Hotamisligil GS. Altered tumor necrosis factor-alpha (TNF-alpha) processing in adipocytes and increased expression of transmembrane TNFalpha in obesity. Diabetes. 2002;51(6):1876-83. https://doi.org/10.2337/diabetes.51.6.1876 PMid:12031976

Kabayama K, Sato T, Kitamura F, Uemura S, Kang BW, Igarashi Y, et al. TNFα-induced insulin resistance in adipocytes as a membrane microdomain disorder: Involvement of ganglioside GM3. Glycobiology. 2005;15(1):21-9. https://doi.org/10.1093/glycob/cwh135

Solomon S, Odunusi O, Carrigan D, Majumdar G, Kakoola D, Lenchik N, et al. TNF-α inhibits insulin action in liver and adipose tissue: A model of metabolic syndrome. Horm Metab Res. 2010;42(2):115-21. https://doi.org/10.1055/s-0029-1241834

da Rocha AF, Liboni TF, Kurauti MA, de Souza CO, Miksza DR, Moreira CC, et al. Tumor necrosis factor alpha abolished the suppressive effect of insulin on hepatic glucose production and glycogenolysis stimulated by cAMP. Pharmacol Rep. 2014;66:380-5. https://doi.org/10.1016/j.pharep.2013.12.005 PMid:24905512

Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793-801. PMid:16823477

Ruan H, Lodish HF. Insulin resistance in adipose tissue: Direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 2003;14(5):447-55. https://doi.org/10.1016/s1359-6101(03)00052-2 PMid:12948526

Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008;582(1):117-31. PMid:18037376

Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745-51. https://doi.org/10.1152/ajpendo.2001.280.5.e745 PMid:11287357

Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes. 2005;54(10):2939-45. https://doi.org/10.2337/diabetes.54.10.2939 PMid:16186396

Akash MS, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: A new therapy for type 2 diabetes mellitus. J Pharm Sci. 2012;101(5):1647-58. https://doi.org/10.1002/jps.23057 PMid:22271340

Akash MS, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525-31. https://doi.org/10.1002/jcb.24402 PMid:22991242

Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J Biomed Sci. 2016;23(1):87. https://doi.org/10.1186/s12929-016-0303-y PMid:27912756

Parkash J, Chaudhry MA, Rhoten WB. Tumor necrosis factoralpha-induced changes in insulin-producing β-cells. Anat Rec A Discov Mol Cell Evol Biol. 2005;286(2):982-93. https://doi.org/10.1002/ar.a.20229 PMid:16114068

Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-107. PMid:21233852

Huang ZQ, Liao YQ, Huang RZ, Chen JP, Sun HL. Possible role of TCF7L2 in the pathogenesis of Type 2 diabetes mellitus. Med Biotechnol Biotechnol Equip. 2018;32(4):830-4.

Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, Benediktsson R, et al. Refining the impact of TCF7L2 gene variants on Type 2 diabetes and adaptive evolution. Nat Genet. 2007;39(2):218-25. PMid:17206141

Palmer ND, Hester JM, An SS, Adeyemo A, Rotimi C, Langefeld CD, et al. Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes. 2011;60(2):662-8. https://doi.org/10.2337/db10-0134 PMid:20980453

Xia Q, Deliard S, Yuan CX, Johnson ME, Grant SF. Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2. Eur J Hum Genet. 2014;23(1):103-9. https://doi.org/10.1038/ejhg.2014.48 PMid:24667787

Mondal AK, Das SK, Baldini G, Chu WS, Sharma NK, Hackney OG, et al. Genotype and tissue-specific effects on alternative splicing of the transcription factor 7-like 2 gene in humans. J Clin Endocrinol Metab. 2010;95(3):1450-7. https://doi.org/10.1210/jc.2009-2064 PMid:20097709

Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, et al. The international mouse phenotyping consortium web portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014;42:D802-9. https://doi.org/10.1093/nar/gkt977 PMid:24194600

Bowman TA, O’Keeffe KR, D’Aquila T, Yan QW, Griffin JD, Killion EA, et al. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol Metab. 2016;5(3):210-20. https://doi.org/10.1016/j.molmet.2016.01.001 PMid:26977393

Xia Q, Chesi A, Manduchi E, Johnston BT, Lu S, Leonard ME, et al. The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia. 2016;59(11):2360-8. https://doi.org/10.1007/s00125-016-4077-2 PMid:27539148

Maschio DA, Oliveira RB, Santos MR, Carvalho CP, Barbosa-Sampaio HC, Collares-Buzato CB. Activation of the Wnt/β-catenin pathway in pancreatic beta cells during the compensatory islet hyperplasia in prediabetic mice. Biochem Biophys Res Commun. 2016;478(4):1534-40. https://doi.org/10.1016/j.bbrc.2016.08.146 PMid:27576200

Shao W, Wang D, Chiang YT, Ip W, Zhu L, Xu F, et al. The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes. 2013;62(3):789-800. https://doi.org/10.2337/db12-0365 PMid:22966074

Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci. 2014;121:23-65. PMid:24373234

Manandhar B, Ahn JM. Glucagon-like Peptide-1 (GLP-1) analogs: Recent advances, new possibilities, and therapeutic implications. J Med Chem. 2015;58(3):1020-37. https://doi.org/10.1021/jm500810s PMid:25349901

Sorrenson B, Cognard E, Lee KL, Dissanayake WC, Fu Y, Han W, et al. A critical role for β-catenin in modulating levels of insulin secretion from β-cells by regulating actin cytoskeleton and insulin vesicle localization. J Biol Chem. 2016;291(50):25888-900. https://doi.org/10.1074/jbc.m116.758516 PMid:27777306

Mykkänen L, Haffner SM, Hales CN, Rönnemaa T, Laakso M. The relation of proinsulin, insulin, and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects. Diabetes. 1997;46(12):1990-5. https://doi.org/10.2337/diabetes.46.12.1990 PMid:9392485

da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes. 2009;58(4):894-905. https://doi.org/10.2337/db08-1187 PMid:19168596

Shen J, Fang Y, Ge W. Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with impaired proinsulin conversion-a meta-analysis. Diabetes Res Clin Pract. 2015;109(1):117-23. https://doi.org/10.1016/j.diabres.2015.04.020 PMid:25934528

Downloads

Published

2020-09-15

How to Cite

1.
El Hini SH, Ahmed ATZ, Hamed EM, Mahmoud YZ, Eldin AMK, Abdelghany HM. Pivotal Role of Both TNF-α 238G/A and TCF7L2 C/T Gene Polymorphisms in Type 2 Diabetes: Pivotal role of both TNFα 238G/A and TCF7L2 C/T gene polymorphisms in Type 2 Diabetes . Open Access Maced J Med Sci [Internet]. 2020 Sep. 15 [cited 2024 Nov. 21];8(F):283-6. Available from: https://oamjms.eu/index.php/mjms/article/view/5008

Issue

Section

Narrative Review Article

Categories