The Effect of Brown Rice on Superoxide Dismutase Level and Non-alcoholic Fatty Liver in an Sprague–Dawley Rat Model of High-fat High-fructose Diet-induced Obesity
DOI:
https://doi.org/10.3889/oamjms.2020.5124Keywords:
Brown Rice, Superoxide dismutase, Nonalcoholic fatty liver disease, High-fat high-fructose dietAbstract
BACKGROUND: Obesity can cause oxidative stress due to the release of free radical components or reactive oxygen species. The accumulation of excess fat in obesity also causes the occurrence of non-alcoholic fatty liver. Brown rice is a functional food with higher fiber, vitamin, mineral, and antioxidant contents than those in white rice.
AIM: This study was aimed to evaluate the effect of brown rice on the superoxide dismutase (SOD) level and non-alcoholic fatty liver in obese Sprague–Dawley rats.
METHODS: An experimental study using a post-test-only control group design was carried out on a Sprague–Dawley rat model of obesity-induced by a high-fat high fructose (HFHF) diet. Sample selection was done through simple random sampling; rats were divided into five groups, namely the normal diet group (K−), the HFHF diet group (K+), and HFHF diet groups with the addition of brown rice dose I (P1), dose II (P2), and dose III (P3). The measured variable was the SOD level measured using the spectrophotometric method and the calculation of the percentage of fatty liver cells on the results of a hematoxylin-eosin liver scan of a rat’s right lobe.
RESULTS: The dose of brown rice was not affected body weight of the rats significantly compared to the control groups. Then, there were significant differences in the SOD level and fatty liver in at least two groups (p = 0.01 and p = 0.001).
CONCLUSION: This study concludes that the administration of brown rice contributes to the increasing SOD level and decreasing fatty liver in obese model rats.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
National Institute for Health and Care Excellence. Obesity: Identification, Assessment and Management. Available from: https://www.nice.org.uk/guidance/cg189. [Last accessed on 2020 Jun 14].
Minarto M. Pedoman Pencegahan dan Penanggulangan Kegemukan dan Obesitas Pada anak Sekolah. Jakarta, Indonesia: Kementerian Kesehatan Republik Indonesia; 2012.
Wei TL, Te FC, Hsiao LH, Chun YL, Sharon T, Pei WW, et al. Fructose-rich beverage intake and central adiposity, uric acid, and pediatric insulin resistance. J Pediatr. 2016;171:90-6.e1. PMid:24475021
Fatimah ZB, Saifuddin S, Rahayu I. Consumption pattern towards the incidence of central obesity in employee of government in Bupati Office Jeneponto. Indones J Public Health. 2013;9:1-14.
Geoffrey MC. The cell: A Molecular Approach. Washington, DC: ASM Press; 2003.
Gisti R, Farida NR, Hery W. Aktivitas superoksida dismutase tikus diabetes yang diberi ekstrak batang kapulaga dan glibenklamid. Scr Biol. 2014;1:1-8. https://doi.org/10.20884/1.sb.2014.1.3.42
Regi P, Dasrul D, Sugito S, Muslim A, Zuhrawati Z, Syafruddin S. The effect of Vitamin E to superoxide dismutase serum level in diabetes mellitus induced white rat (Rattus norvegicus). J Ilmiah Mahasiswa Vet. 2018;2:442-9.
Zhang Z, Wang Z, Yang Z, Niu Y, Zhang W, Xiaoyong L, et al. A novel mice model of metabolic syndrome: The high-fat-high-fructose diet-fed ICR mice. Exp Anim. 2015;64(4):435-42. https://doi.org/10.1538/expanim.14-0086 PMid:26134356
Kanokwan J, Nattharat J, Chariya P. A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica (Cairo). 2016;2016:5029414. https://doi.org/10.1155/2016/5029414 PMid:27019761
Jung SL, Michele MS, Annie V, Jean MS, Robert HL. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251-64. PMid:20368739
Doha AM, Sherein SA, Hend AE, Rasha SM. Preparation and evaluation of functional foods for prevention of non-alcoholic fatty liver disease. Pak J Biol Sci. 2018;21:454-62. PMid:30724047
Dian H, Barbara JM, Jiezhong C, Simon HJ, Todd WM, Xu FH. A high-dose shiitake mushroom increases hepatic accumulation of triacylglycerol in rats fed a high-fat diet: Underlying mechanism. Nutrients. 2014;6:650-62. https://doi.org/10.3390/nu6020650 PMid:24566434
Shaw W, Shoichi M, Azusa H. Effects of brown rice on obesity: GENKI study I (cross sectional epidemiological study). J Obes Chronic Dis. 2018;2:12-9. https://doi.org/10.17756/jocd.2018-013
Etik S, Achmad R, Setyawati S, Dian FH. The identification of characteristic macro and micronutrients and the bioactive components of indonesian local brown rice as a functional feed in obesity nutrition therapy. Curr Nutr Food Sci. 2019;15:1-7. https://doi.org/10.2174/1573401315666190328223626
Hiroyuki I, Toshiyuki S, Naoki N, Takashi N, Chie K, Maya U, et al. Dewaxed brown rice feed improves fatty liver in obese and diabetic model mice. Anticancer Res. 2018;38:4339-45. https://doi.org/10.21873/anticanres.12734 PMid:29970571
Jin NH, Mi ES, Won CL, Seung TL, Hong YC. Anti-obesity effects of germinated brown rice extract through down-regulation of lipogenic genes in high fat diet-induced obese mice. Biosci Biotechnol Biochem. 2012;76:1068-74. https://doi.org/10.1271/bbb.110666 PMid:22790925
Indonesia Central Bureau of Statistics. Rata-rata Konsumsi per Kapita 2007-2015. Jakarta, Indonesia: Indonesia Central Bureau of Statistics; 2015.
Sang IL, Jae WK, Ye KL, Seung HY, In-Ae L, Joo WS, et al. Anti-obesity effect of Monascus pilosus mycelial extract in high fat diet-induced obese rats. J Appl Biol Chem. 2011;54:197-205. https://doi.org/10.3839/jabc.2011.033
Mark B, Xuchen Z. Non-alcoholic fatty liver disease: An expanded review. World J Hepatol. 2017;9:715-32. PMid:28652891
Sijiani P. Consuming excessive amount of fructose may affect our health. J Public Health. 2011;10:173-89.
Andressa BM, Paulo AN, Carmen AP, Bruno LA, Karen NS, Manuela AC. Obesity induction with high fat sucrose in rats. Arq Bras Cir Dig. 2013;26:17-21. PMid:24463893
Verhoeven C, Yekti W. The Effect of Peanut Butter Administration with Red Bran Substitution on Blood Glucose Levels of Diabetic Rats. J Nutr Coll. 2015;4:423-7. https://doi.org/10.14710/jnc.v4i4.10120
Michelle JC, Joanne LS. The effect of fiber on satiety and food intake: A systematic review. J Am Coll Nutr. 2013;32:200-11. PMid:23885994
Fikret E, Dogan A, Fatma M, Boztepe O, Bekir SP, Sahin S. The effect of diet induced obesity on testicular tissue and serum oxidative stress parameter. Acta Urol Esp. 2011;36:153-9. PMid:21959063
Myeong HK, Eun JL, Jeong MC, Ki JN, Taeho O, Kil SK. Antioxidant and hepatoprotective effects of fermented red ginseng against high fat diet-induced hyperlipidemia in rats. Lab Anim Res. 2016;32(4):217-23. https://doi.org/10.5625/lar.2016.32.4.217
Maria CFS, Iwan B. Efek fruktosa dan glukosa terhadap kadar trigliserida plasma. J Kes Masy. 2011;11(1):39-47.
Rosa V, Lucrezia G, Camilla C, Elisabetta S, Donatella P. Biomarkers of oxidative stress in metabolic syndrome and associated disease. Oxid Med Cell Longev. 2019;2019:8267234.
Martha G, Mercedes B, Rosa C, Javier P. Phenolic Acids: Natural Product. Heidelberg: Springer; 2013.
Melissa W, Enio, M. Phenolic compounds and antioxidant activity of rice. Braz Arch Biol Technol. 2011;5(2):371-7.
Gong ES, Luo SJ, Li T, Liu CM, Zhang GW, Chen J, et al. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 2017;227:432-43. PMid:28274454
Asri W. The role of antioxidants for health. Indo J Biotechnol Med. 2014;3(2):59-68.
Chung SI, Ham TH, Kang MY. Effect of germinated pigmented rice “Superjami” on the glucose level, antioxidant defense system, and bone metabolism in menopausal rat model. Nutrients. 2019;11(9):2184. https://doi.org/10.3390/nu11092184 PMid:31514360
Jung YK, Min HD, Sang SL. The effects of a mixture of brown and black rice on lipid profiles and antioxidant status in rats. Ann Nutr Metab. 2006;50(4):347-53. PMid:16809902
Chi TY, Gow CY. Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance associated protein 3 mRNA expression. J Nutr. 2006;136(1):11-5. https://doi.org/10.1093/jn/136.1.11 PMid:16365051
Charlotte JG, Leanne H. The influence of dietary fat on liver fat accumulation. Nutrients. 2014;6(11):5018-33. https://doi.org/10.3390/nu6115018 PMid:25389901
Dong MZ, Rui QJ, Ling DK. High dietary fructose: Direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients. 2017;9(4):335. https://doi.org/10.3390/nu9040335 PMid:28353649
Shobha HG, Gary DK, Nils L, Moti LK, Vajinath SK. Therapeutic Role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):320-7. https://doi.org/10.1152/ajpgi.00181.2013 PMid:24356885
Kataryzna L, Caroline W, Konstantinos K, Jurgen M, Fritz S, Marjo G, et al. Dietary niacin intake predicts the decrease of liver fat content during a lifestyle intervention. Sci Rep. 2019;9(1):1303. PMid:30718741
Yun J, Yue Y, Zuru L, Weizhen Z. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD). Nutrients. 2019;11(8):1712. https://doi.org/10.3390/nu11081712 PMid:31349604
Miao H, Winnie CW, Shizuya Y, David KW, Lin S, Defeng W, et al. Liver fat reduction with niacin is influenced by DGAT-2 polymorphisms in hypertriglyceridemic patients. J Lipid Res. 2012;53(4):802-9. PMid:22315393
Carolina MP, Gema F, Javier E. Impact of nutritional changes on nonalcoholic fatty liver disease. Nutrients. 2019;11(3):677. PMid:30901929
Downloads
Published
How to Cite
License
Copyright (c) 2020 Inggita Kusumastuty, Dian Handayani, Shafira Hanifa, Melinda Lisan, Etik Sulistyowati (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Universitas Brawijaya
Grant numbers No. 23/SK/UN10.F08.06/KS/2018.