Correlation Study between Elevation, Population Density, and Dengue Hemorrhagic Fever in Kendari City in 2014–2018

Authors

  • Siti Nurul Ainun Istiqamah Department of Epidemiology, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
  • Arsunan A. Arsin Department of Epidemiology, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
  • Andi Ummu Salmah Department of Reproductive Health, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
  • Anwar Mallongi Department of Environmental Health, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.5187

Keywords:

Dengue Hemorrhagic Fever, Elevation, Population Density, Kendari

Abstract

BACKGROUND: The incidence of dengue hemorrhagic fever (DHF) has experienced rapid development throughout the world in recent decades. Indonesia was reported as the 2nd country with the largest DHF cases among 30 endemic countries. Dengue virus can develop properly based on certain regional conditions. The elevation is an important factor that can affect the presence of dengue vector mosquitoes. High population density contributes to dengue transmission by increasing the contact between infected mosquitoes and human hosts.

AIM: This study aimed to determine the correlation between elevation and population density with the incidence of dengue in Kendari City in 2014–2018.

METHODS: This research is an observational analytic study with ecological study design. Data incidence of DHF in 2014–2018, elevation and population density were respectively obtained from the Health Office of Kendari City, Meteorology, Climatology and Geophysics Agency of Kendari City, Statistics Agency of Kendari City. The analysis of the data used in the study is univariate and bivariate analysis. Bivariate analysis using Pearson correlation test was performed.

RESULTS: The results showed that the correlation between elevation and DHF (p = 0.014, r = 0.339) and the correlation between population density and DHF (p = 0.186).

CONCLUSION: It can be concluded that there is significant correlation with positive direction between elevation and the DHF, and there is no significant correlation between population density and DHF incidence in Kendari City in 2014–2018.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Dengue and Severe Dengue. Geneva: World Health Organization; 2018.

Kementerian Kesehatan RI. InfoDatin Situasi Demam Berdarah di Indonesia Tahun 2017. Jakarta: Kementerian Kesehatan Republik Indonesia; 2017. https://doi.org/10.14710/jkli.19.1.27-34

Sang S, Gu S, Bi P, Yang W, Yang Z, Xu L. Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014. PLoS Negl Trop Dis. 2015;9(5):e0003808. https://doi.org/10.1371/journal.pntd.0003808 PMid:26020627

Hidayati R, Kesumawati U, Manuwoto S, Boer R, Koesmayono Y. Kebutuhan satuan panas untuk fase perkembangan pada nyamuk Aedes aegypti (Diptera: Culicidae) dan periode inkubasi ekstrinsik virus dengue. J Ekolol Kesehatan. 2007;6(3):648-58.

Schmidt W, Suzuki M, Thiem VD, White RG, Tsuzuki A, Yoshida L, et al. Population density, water supply, and the risk of dengue fever in Vietnam: Cohort study and spatial analysis. PLoS Med. 2011;8(8):e1001082. https://doi.org/10.1371/journal.pmed.1001082 PMid:21918642

Simoy MI, Simoy MV, Canziani GA. The effect of temperature on the population dynamics of Aedes aegypti. Ecol Model. 2015;314(1):100-10. https://doi.org/10.1016/j.ecolmodel.2015.07.007

Sumi A, Telan EF, Chagan-Yasutan H, Piolo MB, Hattori T, Kobayashi N. Effect of temperature, relative humidity and rainfall on dengue fever and leptospirosis infections in Manila, the Philippines. Epidemiol Infect. 2017;145(1):78-86. https://doi.org/10.1017/s095026881600203x PMid:27608858

Handayani S, Fannya P, Roza SH, Angelia I. Analisis spasial temporal hubungan kepadatan penduduk dan ketinggian tempat dengan kejadian DBD kota padang. J Kesehatan Med Saintika. 2017;8(1):25-34.

Kesetyaningsih TW, Andarini S, Sudarto, Pramoedyo H. Determination of environmental factors affecting dengue incidence in Sleman district, Yogyakarta, Indonesia. Afr J Infect Dis. 2018;12(1):13-25. https://doi.org/10.21010/ajid.v12i1s.3

Hendri J, Santya RN, Prasetyowatil H. Distribusi dan kepadatan vektor demam berdarah dengue (DBD) berdasarkan ketinggian tempat di kabupaten Ciamis Jawa Barat. J Ekol Kesehatan. 2015;14(1):17-28. https://doi.org/10.22435/jek.v14i1.4654.17-28

Subedi D, Taylor-Robinson AW. Epidemiology of dengue in Nepal: History of incidence, current prevalence and strategies for future control. J Vector Borne Dis. 2016;53(1):1-7.

Murray NE, Quam M, Wilder-Smith A. Epidemiology of dengue: The past, present and prospects. Clin Epidemiol. 2013;5(1):299-309. https://doi.org/10.2147/clep.s34440

Sayono S, Nurullita U, Sumanto D, Handoyo W. Altitudinal distribution of Aedes indices during dry season inthe dengue endemic area of Central Java, Indonesia. Ann Parasitol. 2017;63(3):213-21.

Brady OJ, Johansson MA, Guerra CA. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. BMC Parasit Vectors. 2013;6(1):352. https://doi.org/10.1186/1756-3305-6-351 PMid:24330720

Sirisena P, Noordeen F, Kurukulasuriya H, Romesh T, Fernando L. Effect of climatic factors and population density on the distribution of dengue in Sri Lanka: A GIS Based evaluation for prediction of outbreaks. PLoS One. 2017;12(1):e0166806. https://doi.org/10.1371/journal.pone.0166806 PMid:28068339

Goto K, Kumarendran B, Mettananda S, Gunasekara D, Fujii Y. Analysis of effects of meteorological factors on dengue incidence in Sri Lanka using time series data. PLoS One. 2013;8(5):e63717. https://doi.org/10.1371/journal.pone.0063717 PMid:23671694

Araujoa RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Franceschi NC, et al. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz J Infect Dis. 2015;9(2):146-55. https://doi.org/10.1016/j.bjid.2014.10.004 PMid:25523076

Glasser CM, Arduino Mde B, Barbosa GL. Behavior ofimmatures Aedes aegypti in the coast state of Sao Paulo, Brazil. Rev Soc Bras Med Trop. 2011;44(3):49-55. PMid:21739074

Machado-Machado EA. Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl Geogr. 2012;33(1):82-93. https://doi.org/10.1016/j.apgeog.2011.06.011

Struchiner CJ, Rocklöv J, Wilder-Smith A, Massad E. Increasing dengue incidence in Singapore over the past 40 years: Population growth, climate and mobility. PLoS One. 2015;10(8):1-14. https://doi.org/10.1371/journal.pone.0136286

Arsunan SA. Syamsiar R, Muhammad AN, Rezki E, Aries TP, Nilawati UA, et al. Identification and strengthening of positive deviance: An efforts to reduce the incidence of malaria in Selayar Islands. Enferm Clín. 2020;30(Suppl 2):528-32. https://doi.org/10.1016/j.enfcli.2019.07.153

Arsunan AA, Dwinata I, Ariyanto J, Nurdin MA, Aisyah. Positive deviance against malaria events in Majene district. Indian J Public Health Res Dev. 2019;10(10):3021. https://doi.org/10.5958/0976-5506.2019.03021.3

Downloads

Published

2020-07-23

How to Cite

1.
Istiqamah SNA, Arsin AA, Salmah AU, Mallongi A. Correlation Study between Elevation, Population Density, and Dengue Hemorrhagic Fever in Kendari City in 2014–2018. Open Access Maced J Med Sci [Internet]. 2020 Jul. 23 [cited 2021 Sep. 20];8(T2):63-6. Available from: https://oamjms.eu/index.php/mjms/article/view/5187

Most read articles by the same author(s)

1 2 3 > >>