Identification of Active Compounds of Ethanol Extract of Citrus amblycarpa leaves by Analysis of Thin-layer Chromatography and Gas Chromatography-Mass Spectrometry as Bioinsecticide Candidates for Mosquitoes
DOI:
https://doi.org/10.3889/oamjms.2020.5207Keywords:
TLC, GC-MS, Bioinsectisidal, Citrus amblycarpa, Aedes aegyptAbstract
BACKGROUND: The use of active compounds from plants becomes an alternative to control mosquitoes nowadays and in the future because they are environmentally-friendly and do not cause health problems. Citrus amblycarpa is a local orange of South Kalimantan potential as bioinsecticidal, which commonly used for controlling mosquitoes. Therefore, research needs to be done to find out the benefits of C. amblycarpa leaves as bioinsecticidal.
AIM: The research aimed to identify active compounds contained in the extract ethanol of C. amblycarpa leaves as bioinsecticidal against mosquitoes.
RESULTS: Based on thin-layer chromatography test, there were some secondary metabolite compounds found such as terpenoids/steroids, flavonoids, polyphenols, and saponins. Gas chromatography-mass spectrometry (GC-MS) test revealed that there were ten primary components of the fraction. The components were Maragenin I (18,82%), 1,3-benzenedicarboxamide (12.28%), 2,3,8-trioxocephalotaxane (10.39%), aristolone, 2H-cyclopropa[a] naphthalene-2-one, noruns-12-ene (7.46%), palmitic acid, n-hexadecanoic acid (7.21%), stigmasterol, demecolcine (7.03%), alpha-tocopherol (5.88%), 2,4,5-trimethylphenol, pseudocumenol (4.21%), germacrene-D (3.45%), and 9-octadecenoic acid (3.36%).
CONCLUSION: These active compounds possess biological activity as bioinsecticidal. It was expected that those active compounds in C. amblycarpa leaves could be applied for controlling mosquitoes by replacing the use of resistant temephos.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Tosepu R, Tantrakarnapa K, Nakhapakorn K, Worakhunpiset S. Climate variability and dengue hemorrhagic fever in Southeast Sulawesi Province, Indonesia. Environ Sci Pollut Res Int. 2018;25(15):14944-52. https://doi.org/10.1007/ s11356-018-1528-y PMid:29549613
Mapalagamage M, Handunnetti S, Premawansa G, Thillainathan S, Fernando T, Kanapathippillai K, et al. Is total serum nitrite and nitrate (NOx) level in dengue patients a potential prognostic marker of dengue hemorrhagic fever? Dis Markers. 2018;2(2):1-9. https://doi.org/10.1155/2018/5328681 PMid:30069272
Retnaningrum OT, Martini M, Raharjo M. Incidence of dengue hemorrhagic fever (DHF) in semarang coastal area: Epidemiology descriptive case and bionomic vector. Indones J Trop Infect Dis. 2019;7(6):144-9. https://doi.org/10.20473/ijtid. v7i6.10389
Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Res Notes. 2019;12:350. https://doi. org/10.1186/s13104-019-4379-9 PMid:31221186
Ishak NI, Kasman K. The effect of climate factors for dengue hemorrhagic fever in Banjarmasin city, South Kalimantan Province, Indonesia, 2012-2016. Public Health Indones. 2018;4(3):121-8. https://doi.org/10.36685/phi.v4i3.181
Ridha MR, Sembiring W, Fadilly SS. Indikator Entomologi dan Status Resistensi Vektor Demam Berdarah Dengue (Aedes aegypti L) Terhadap Beberapa Golongan Insektisida di Kota Banjarbaru. In: Prosiding Seminar Nasional Seri No. 8; 2018. p. 128-42. https://doi.org/10.22435/vektorp.v13i2.931
Susilowati RP, Darmanto W, Aminah NS. “MORIZENA” against Aedes aegypti death. Indones J Trop Infect Dis. 2018;7(2):50-5.
Hastutiek AS, Heru PR. Permot (Passiflora foetida Linn.) leaf extracts as bioinsecticide against Aedes aegypti larvae. Southeast Asian J Trop Med Public Health. 2017;48(6):1169-74.
Anwar C, Syukur KM, Dalilah D, Salni S, Novrikasari N. The efficacy of red ginger fraction (Zingiber officinale Roscoe var. rubrum) as insecticidal Aedes aegypti. Biosci Med. 2018;2(2):31- 41. https://doi.org/10.32539/bsm.v2i2.40
Irwan A, Mustikasari K, Ariyani D. Chemical preliminary evaluation of leaves, peels, and fleshs fruit of limau kuit: local orange of south kalimantan. Sains Terap Kim. 2017;11(2):71-9. https://doi.org/10.20527/jstk.v11i2.4040
Ishak NI, Kasman K, Chandra C. Effectiveness of Lime Skin Extract (Citrus amblycarpa) as natural larvacide aedes aegypti instar III. J MKMI. 2019;15(3):302-10. https://doi.org/10.30597/ mkmi.v15i3.6533
Sastrohamidjojo H. Kromatografi. Yogyakarta: Liberty Yogyakarta; 1985.
Harborne J. Metode Fitokimia Penuntun Cara Modern Menganalisis Tumbuhan. Bandung: Penerbit ITB; 1987.
Astriani Y., Widawati M. Potential plant in indonesia as natural larvicides for aedes aegypti. SPIRAKEL. 2018;8(1):37-46. https://doi.org/10.22435/spirakel.v8i2.6166.37-46
Kartina, Agang MW, Adiwena M. Characterisation of phytochemical content of leaf extract from karamunting (Melastoma malabatchricum L.) using gas chromatography mass spectrometry (GC-MS). Biota. 2019;4(1):16-23. https:// doi.org/10.24002/biota.v4i1.2363
Perumalsamy H, Jang MJ, Kim J, Kadarkarai M, Ahn Y. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit Vectors Biomed Cent. 2015;8:237. https://doi.org/10.1186/s13071-015-0848-8 PMid:25928224
Ghosh A. Efficacy of phytosterol as mosquito larvicide. Asian Pacific J Trop Dis. 2013;3(3):252. https://doi.org/10.1016/ s2222-1808(13)60050-x
Hidana SN. Effectiveness of lemongrass leaves (Cymbopogon nardus) extract as anti-oviposition to aedes aegypti mosquito. J Kesehat Bakti Tunas Husada. 2015;13(1):130-4. https://doi. org/10.36465/jkbth.v13i1.24
Utami IW, Cahyati WA. Potential of cambodia leaf extract (Plumeria acuminata) as insecticide against aedes aegypti mosquitoes. HIGEIA. 2017;1(1):22-8.
Gautam K, Kumar P, Poonia S. Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti. J Vector Borne Dis. 2013;50(3):171-8. PMid:24220075
Hylands PJ, Salama AM. Maragenin I, II, and III, new pentacyclic triteroenes from Marah macrocarpus. Tetrahedron. 1978;35:417-20. https://doi.org/10.1016/0040-4020(79)80081-2
Itokawa H, Nakajima H, Ikuta A, Iitaka Y. Two triterpenes from the flowers of Camellia japonica. Phytochemistry. 1981;20(11):2539- 42. https://doi.org/10.1016/0031-9422(81)83089-0
Aref HL, Aouni M, Chaumon JP, Said K, Fekih A, Génétique L De. In vitro antiviral activities of Jrani caprifig latex and its related terpenes. Afr J Microbiol Res. 2011;5(32):5812-8. https://doi. org/10.5897/ajmr10.104
El-tantawy ME, Haggag EG, Kamal AM, Lithy RM. Phytochemical and biological evaluation of banana, cantaloupe and guava waste parts. J Pharm Res. 2016;10(5):308-18.
Aboobucker SI, Suza WP. Why do plants convert sitosterol to stigmasterol ? Front Plant Sci. 2019;10:354. https://doi. org/10.3389/fpls.2019.00354 PMid:30984220
Okonkwo CO, Onyeji CM. Insecticidal potentials and chemical composition of essential oils from the leaves of Phyllanthus amarus and Stachytarpheta cayennensis in Nigeria. Int J Biochem Res Rev. 2018;22(3):1-16. https://doi.org/10.9734/ ijbcrr/2018/42315
Ifeanyi OE. A review on palm oil supplemented diet and enzymatic antioxidants in aging. Int J Curr Res Med Sci. 2018;4(4):43-52.
Wartono MW, Ainurofiq MI. Chemical contituent of the essential oils from the fruits of Piper betle L, Piper cubeba L, and Piper retrofractum Vahl. Molekul. 2014;9(1):1-12. https://doi. org/10.20884/1.jm.2014.9.1.143
Ishak H, Mallongi A, Wahid I, Bachtiar I. Spatiotemporal factors related to dengue hemorrhagic fever in Makassar city, 2010- 2014. Indian J Public Health Res Dev. 2018;9(6):452. https:// doi.org/10.5958/0976-5506.2018.00596.x
Muhith A, Winarti E, Perdana SS, Haryuni S, Rahayu KI, Mallongi A. Internal locus of control as a driving factor of early detaction behavior of servical cancer by inspection visual of acetic acid method. Open Access Maced J Med Sci. 2020;8(E):113-6. https://doi.org/10.3889/oamjms.2020.4341
Mallongi A, Birawida AB, Astuti RD, Saleh M. Effect of lead and cadmium to blood pressure on communities along coastal areas of Makassar, Indonesia. Enferm Clín. 2020;30(4):313-7. https:// doi.org/10.1016/j.enfcli.2020.03.001
Darmawan UW, Ismanto A. Mortality of yellow butterfly (Eurema sp.) larvae due to pond apple (Annona glabra L.) seed extract application. J Penelit Hutan Tanam. 2016;13(2):157-64. https:// doi.org/10.20886/jpht.2016.13.2.157-164
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Kasman Kasman, Nuning Irnawulan Ishak, Poedji Hastutiek, Endang Suprihati, Anwar Mallongi (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0