Topical Instillation of Resveratrol Preconditioned Wharton’s Jelly Mesenchymal Stem Cell Secretome Preserves Ocular Surface in Experimental Model of Severe Dry Eye Disease
DOI:
https://doi.org/10.3889/oamjms.2020.5305Keywords:
Mesenchymal stem cell, Resveratrol, Secretome, Dry eye disease, Ocular surfaceAbstract
BACKGROUND: Secretome derived from Wharton’s jelly mesenchymal stem cells (WJ-MSC) has a beneficial effect for ocular surface regeneration; however, the high amount of vascular endothelial growth factor (VEGF) remains a challenge for its application.
AIM: The aim of the study was to investigate the effect of resveratrol (RV) (VEGF reducing agent) preconditioned WJ-MSC secretome in Concanavalin A-induced severe dry eye model.
METHODS: Pre- and post-experimental study composed of topical instillation of WJ-MSC secretome group, balanced salt solution control group, and normal control group. Tear production, tear break-up time (TBUT), corneal fluorescein dye staining, VEGF level in aqueous tear, goblet cell density, and inflammatory cells in the ocular surface were analyzed.
RESULTS: Topical instillation of RV preconditioned WJ-MSC secretome successfully improved tear film production (p = 0.008) and TBUT (p = 0.008), promoted goblet cell restoration (p = 0.023) and reduced corneal fluorescein staining (p = 0.003), while inhibited infiltration of inflammatory cells (p = 0.01) and secretion of VEGF in aqueous tear (p = 0.003).
CONCLUSION: Topical instillation of RV preconditioned WJ-MSC secretome has great potential as cell-free based therapy to preserve ocular surface in an experimental model of severe Dry eye disease.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Villatoro AJ, Fernández V, Claros S, Alcoholado C, Cifuentes M, Merayo-Lloves J, et al. Regenerative therapies in dry eye disease: From growth factors to cell therapy. Int J Mol Sci. 2017;18(11):2264. https://doi.org/10.3390/ijms18112264 PMid:29143779
Villatoro AJ, Fernández V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. Biomed Res Int. 2015;2015:527926. https://doi.org/10.1155/2015/527926 PMid:25802852
Baradaran-Rafii A, Asl NS, Ebrahimi M, Jabbehdari S, Bamdad S, Roshandel D, et al. The role of amniotic membrane extract eye drop (AMEED) in in vivo cultivation of limbal stem cells. Ocul Surf. 2017;16(1):146-53. https://doi.org/10.1016/j.jtos.2017.11.001 PMid:29104070
Dudok DV, Nagdee I, Cheung K, Liu H, Vedovelli L, Ghinelli E, et al. Effects of amniotic membrane extract on primary human corneal epithelial and limbal cells. Clin Exp Ophthalmol. 2015;43(5):443-8. https://doi.org/10.1111/ceo.12480 PMid:25495256
Seong H, Ryu J, Jeong JY, Chung IY, Han YS, Hwang SH, et al. Resveratrol suppresses vascular endothelial growth factor secretion via inhibition of CXC-chemokine receptor 4 expression in ARPE-19 cells. Mol Med Rep. 2015;12(1):1479-84. https://doi.org/10.3892/mmr.2015.3518 PMid:25815440
Safaeinejad Z, Kazeminasab F, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH. Multi-effects of resveratrol on stem cell characteristics: Effective dose, time, cell culture conditions and cell type-specific responses of stem cells to resveratrol. Eur J Med Chem. 2018;155:651-7. https://doi.org/10.1016/j.ejmech.2018.06.037 PMid:29935438
Song JK, Lee K, Park HY, Hyon JY, Oh SW, Bae WK, et al. Efficacy of carboxymethylcellulose and hyaluronate in dry eye disease: A systematic review and meta-analysis. Korean J Fam Med. 2017;38(1):2-7. https://doi.org/10.4082/kjfm.2017.38.1.2 PMid:28197326
Aluri HS, Samizadeh M, Edman MC, Hawley DR, Armaos HL, Janga SR, et al. Delivery of bone marrow-derived mesenchymal stem cells improves tear production in a mouse model of Sjögren’s syndrome. Stem Cells Int. 2017;2017:3134543. https://doi.org/10.1155/2017/3134543 PMid:28348600
Beyazyıldız E, Pınarlı FA, Beyazyıldız O, Hekimoğlu ER, Acar U, Demir MN. Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells Int. 2014;2014:250230. https://doi.org/10.1155/2014/250230 PMid:25136370
Komaratih E, Rindiastuti Y, Wirohadidjojo YW, Rantam FA, Dinaryati A, Lestari NM, et al. The resveratrol increase of hepatocyte growth factor (HGF) and epidermal growth factor (EGF) levels in wharton’s jelly mesenchymal stem cells (WJ-MSCs) secretome: Toward cell free therapy in dry eye disease (DED). Biochem Cell Arch. 2019;19(2):1-7. https://doi.org/10.1080/21691401.2020.1817057
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7(1):125. https://doi.org/10.1186/s13287-016-0363-7 PMid:27581859
Sánchez-Abarca LI, Hernández-Galilea E, Lorenzo R, Herrero C, Velasco A, Carrancio S, et al. Human bone marrow stromal cells differentiate into corneal tissue and prevent ocular graft-versus-host disease in mice. Cell Transplant. 2015;24(12):2423-33. https://doi.org/10.3727/096368915x687480 PMid:25695936
Stevenson W, Chauhan SK, Dana R. Dry eye disease: An immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90-100. https://doi.org/10.1001/archophthalmol.2011.364 PMid:22232476
Bron AJ, De Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438-510. https://doi.org/10.1016/j.jtos.2019.08.007 PMid:28736340
Lee MJ, Ko AY, Ko JH, Lee HJ, Kim MK, Wee WR, et al. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye. Mol Ther. 2015;23(1):139-46. https://doi.org/10.1038/mt.2014.159 PMid:25152016
Bittencourt MK, Barros MA, Martins JF, Vasconcellos JP, Morais BP, Pompeia C, et al. Allogeneic mesenchymal stem cell transplantation in dogs with keratoconjunctivitis sicca. Cell Med. 2016;8(3):63-77. https://doi.org/10.3727/215517916x693366 PMid:28003932
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells. 2014;6(5):526-39. https://doi.org/10.4252/wjsc.v6.i5.526 PMid:25426250
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Open Access Maced J Med Sci. 2020 Oct 30; 8(B):1116-1123. 1123 Kao WW. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system. Ocul Surf. 2016;14(2):121-34. https://doi.org/10.1016/j.jtos.2015.11.004 PMid:26804815
Su W, Wan Q, Huang J, Han L, Chen X, Chen G, et al. Culture medium from TNF-α-stimulated mesenchymal stem cells attenuates allergic conjunctivitis through multiple antiallergic mechanisms. J Allergy Clin Immunol. 2015;136(2):423-32. https://doi.org/10.1016/j.jaci.2014.12.1926 PMid:25652765
Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. TFOS DEWS II epidemiology report. Ocul Surf. 2017;15(3):334-65. https://doi.org/10.1016/j.jtos.2017.05.003 PMid:28736337
Wen L, Zhu M, Madigan MC, King NJ, Billson FA, McClellan K, et al. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells on pro-inflammatory cytokine-stimulated human corneal epithelial cells. PLoS One. 2014;9(7):e101841. https://doi.org/10.1371/journal.pone.0101841 PMid:25003339
Murri MS, Moshirfar M, Birdsong OC, Ronquillo Y, Ding Y, Hoopes PC. Amniotic membrane extract and eye drops: A review of literature and clinical application. Clin Ophthalmol. 2018;12:1105-23. https://doi.org/10.2147/opth.s165553 PMid:29950805
Magaña-Guerrero FS, Domínguez-López A, Martínez- Aboytes P, Buentello-Volante B, Garfias Y. Human amniotic membrane mesenchymal stem cells inhibit neutrophil extracellular traps through TSG-6. Sci Rep. 2017;7(1):12426. https://doi.org/10.1038/s41598-017-10962-2 PMid:28963485
Javorkova E, Trosan P, Zajicova A, Krulova M, Hajkova M, Holan V. Modulation of the early inflammatory microenvironment in the alkali-burned eye by systemically administered interferon- γ-treated mesenchymal stromal cells. Stem Cells Dev. 2014;23(20):2490-500. https://doi.org/10.1089/scd.2013.0568 PMid:24849741
Bermudez MA, Sendon-Lago J, Eiro N, Treviño M, Gonzalez F, Yebra-Pimentel E, et al. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Invest Ophthalmol Vis Sci. 2015;56(2):983- 92. https://doi.org/10.1167/iovs.14-15859 PMid:25613942
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17-45. https://doi.org/10.1016/j.preteyeres.2015.07.002 PMid:26197361
Oh JY, Ko JH, Kim MK, Wee WR. Effects of mesenchymal stem/ stromal cells on cultures of corneal epithelial progenitor cells with ethanol injury. Invest Ophthalmol Vis Sci. 2014;55(11):7628-35. https://doi.org/10.1167/iovs.14-15424 PMid:25370509
Sendon-Lago J, Seoane S, Martinez-Ordonez A, Eiro N, Saa J, Vizoso FJ, et al. Corneal regeneration by conditioned medium of human uterine cervical stem cells is mediated by TIMP-1 and TIMP-2. Exp Eye Res. 2019;180:110-21. https://doi.org/10.1016/j.exer.2018.12.004 PMid:30557571
Anderson JD, Johansson HJ, Graham, CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells. 2016;34(3):601-13. https://doi.org/10.1002/stem.2298 PMid:26782178
Navas A, Magana-Guerrero FS, Dominguez-Lopez A, Chavez-Garcia C, Partido G, Graue-Hernandez EO, et al. Anti-inflammatory and anti-fibrotic effects of human amniotic membrane mesenchymal stem cells and their potential in corneal repair. Stem Cells Transl Med. 2018;7(12):906-17. https://doi.org/10.1002/sctm.18-0042 PMid:30260581
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Diandra Astaridewi, Evelyn Komaratih, Yuyun Rindiastuti, Yohanes Widodo Wirohadidjojo, Djoko Legowo, Ni Made Inten Lestari, Diandra Astari Dewi, I. Made Satya, Fedik A. Rantam, Cita R. S. Prakoeswa (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0