High Fiber and Beta Carotene from Sweet Potatoes and Pumpkin Improve Insulin Resistance by Inhibition of Sterol Regulatory Binding Protein 1c in Liver of Hypertriglyceridemic Rats

Authors

  • Sunarti Sunarti Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Umar Santoso Center of Food and Nutrition Study, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Abrory Agus Cahya Pramana Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Emy Huriyati Department of Health and Nutrition, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Dianandha Septiana Rubi Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.5354

Keywords:

beta carotene, fiber, insulin resistance, SREBP-1c, triglyceride

Abstract

BACKGROUND: High sterol regulatory binding protein 1c (SREBP-1c) gene expression increases triglyceride synthesis, which induces insulin resistance. Short-chain fatty acids (SCFAs) from fiber fermentation and beta carotene may inhibit SREBP-1c gene expression.

AIM: The aim of this study was to evaluate the high fiber and beta carotene diet on improving insulin resistance in hypertriglyceridemia rats.

METHODS: A total of 25 Wistar male rats were divided into five groups: (1) Normal control (NC); (2) hypertriglyceridemia control (HC); (3) hypertriglyceridemia rats with treatment 1 (HT1); (4) hypertriglyceridemia rats with treatment 2 (HT2); and (5) hypertriglyceridemia rats with treatment 1 (HT3). The HT1, HT2, and HT3 received fiber 1.0 g; 2.0 g; and 3.1 g and beta carotene 725.7 μg; 1451.5 μg; and 2177.2 μg per day, respectively, for 6 weeks. The HC received high fat and fructose diet and the NC received a standard diet. The levels of triglyceride were analyzed using the colorimetric method before and after treatment. At the end of the study, the expression of SREBP-1c was identified by a quantitative polymerase chain reaction.

RESULTS: High fat and fructose diet increased the levels of triglyceride (36.53 ± 1.27 vs. 119.79 ± 7.73), but high fiber and beta carotene diet can reduce triglyceride levels in HT1 (94.58 ± 4.53 vs. 77.70 ± 7.97); HT2 (115.58 ± 4.76 vs. 66.90 ± 3.11); and HT3 (103.87 ± 7.47 vs. 62.06 ± 4.45). The decreased triglyceride levels were related to low SREBP-1c gene expression, especially in the liver. Low SREBP-1c gene expression was correlated with homeostatic model assessment of insulin resistance index with r = 0.414; p < 0.05 in the liver and r = 0.158; p > 0.05 in white adipose tissues.

CONCLUSION: High fiber and beta carotene diet can improve insulin resistance through inhibition of SREBP-1c gene expression.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

McRae MP. Dietary fiber is beneficial for the prevention of cardiovascular disease: An umbrella review of meta-analyses. J Chiropr Med. 2017;16(4):289-99. https://doi.org/10.1016/jjcm.2017.05.005 PMid:29276461 DOI: https://doi.org/10.1016/j.jcm.2017.05.005

Chen C, Zeng Y, Xu J, Zheng H, Liu J, Fan R, et al. Therapeutic effects of soluble dietary fiber consumption on Type 2 diabetes mellitus. Exp Ther Med. 2016;12(2):1232-42. https://doi.org/10.3892/etm.2016.3377 PMid:27446349 DOI: https://doi.org/10.3892/etm.2016.3377

Lee SE, Choi Y, Jun JE, Lee YB, Jin SM, Hur KY, et al. Additional effect of dietary fiber in patients with Type 2 diabetes mellitus using metformin and sulfonylurea: An open-label, pilot trial. Diabetes Metab J. 2019;43(4):422-31. https://doi.org/10.4093/dmj.2018.0090 PMid:31237126 DOI: https://doi.org/10.4093/dmj.2018.0090

Sunarti S, Setyawati T, Oktiyani N, Kusuma RJ. Effects of Dioscorea esculenta and Eubacterium rectale on insulin receptor substrate 1 (Irs1) expression in skeletal muscle and homeostatic model assessment-insulin resistance (HOMA-IR) in diabetic rats. J Med Sci. 2015;47(3):143-51.

Sunarti S, Rini SL, Rubi DS, Miftakhussolikhah M, Ariani D, Sinorita H. Fiber increases endogenous insulin and reduces insulin resistance in diabetes. Pak J Nutr. 2019;18(9):895-9. https://doi.org/10.3923/pjn.2019.895.899 DOI: https://doi.org/10.3923/pjn.2019.895.899

Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and non-starch polysaccharides. Physiol Rev. 2001;81(3):1031-64. https://doi.org/10.1152/physrev.2001.81.3.1031 PMid:11427691 DOI: https://doi.org/10.1152/physrev.2001.81.3.1031

McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 2017;9(12):1348. https://doi.org/10.3390/nu9121348 PMid:29231905 DOI: https://doi.org/10.3390/nu9121348

Hernández MA, Canfora EE, Jocken JW, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients. 2019;11(8):1943. https://doi.org/10.3390/ nu11081943 PMid:31426593 DOI: https://doi.org/10.3390/nu11081943

Jiao AR, Diao H, Yu B, He J, Yu J, Zheng P, et al. Oral administration of short chain fatty acids could attenuate fat deposition of pigs. PLoS One. 2018;13(5):e0196867. https://doi.org/10.1371/journal.pone.0196867 PMid:29723298 DOI: https://doi.org/10.1371/journal.pone.0196867

Xu H, Luo J, Tian H, Li J, Zhang X, Chem Z, et al. Rapid communication: Lipid metabolic gene expression and triacylglycerol accumulation in goat mammary epithelial cells are decreased by inhibition of SREBP-1. J Anim Sci. 2018;96(6):2399-407. https://doi.org/10.1093/jas/sky069 PMid:29846631 DOI: https://doi.org/10.1093/jas/sky069

Karasawa T, Takahashi A, Saito R, Sekiya M, Igarashi M, Iwasaki H, et al. Sterol regulatory element-binding protein-1 determines plasma remnant lipoproteins and accelerates atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2011;31(8):1788-95. https://doi.org/10.1161/atvbaha.110.219659 PMid:21546605 DOI: https://doi.org/10.1161/ATVBAHA.110.219659

Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci. 2018;36(6):406-16. https://doi.org/10.1016/j.tips.2015.04.010 PMid:26005080 DOI: https://doi.org/10.1016/j.tips.2015.04.010

Moslehi A, Hamidi-Zad Z. Role of SREBPs in liver diseases: A mini-review. J Clin Transl Hepatol. 2018;6(3):332-8. PMid:30271747 DOI: https://doi.org/10.14218/JCTH.2017.00061

Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, et al. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem. 2014;289(9):5510-7. https://doi.org/10.1074/jbc.m113.541110 PMid:24398675 DOI: https://doi.org/10.1074/jbc.M113.541110

Horáková D, Štěpánek L, Janout V, Janoutová J, Pastucha D, Kollárová H, et al. Optimal homeostasis model assessment of insulin resistance (HOMA-IR) cut-offs: A cross-sectional study in the Czech population. Medicina (Kaunas). 2019;55(5):158. https://doi.org/10.3390/medicina55050158 PMid:31108989 DOI: https://doi.org/10.3390/medicina55050158

Sunarti S, Rubi DS, Sadewa AH. The effect of pumpkin on GLP-1 and HOMA-β in hypercholesterolemic rats. Rom J Diabetes Nutr Metab Dis. 2016;23(1):19-25. https://doi.org/10.1515/rjdnmd-2016-0003 DOI: https://doi.org/10.1515/rjdnmd-2016-0003

Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Yano M. High-serum carotenoids associated with lower risk for developing Type 2 diabetes among Japanese subjects: Mikkabi cohort study. BMJ Open Diabetes Res Care. 2015;3(1):e000147. https://doi.org/10.1136/bmjdrc-2015-000147 PMid:26688736 DOI: https://doi.org/10.1136/bmjdrc-2015-000147

Keane KN, Cruzat VF, Carlessi R, de Bittencourt PI Jr., Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev. 2015;2015:181643. https://doi.org/10.1155/2015/181643 PMid:26257839 DOI: https://doi.org/10.1155/2015/181643

Ihedioha JI, Noel-Uneke OA, Ihedioha TE. Reference values for the serum lipid profile of albino rats (Rattus norvegicus) of varied ages and sexes. Comp Clin Path. 2013;22(1):93-9. https://doi.org/10.1007/s00580-011-1372-7 DOI: https://doi.org/10.1007/s00580-011-1372-7

Ble-Castillo JL, Aparicio-Trapala MA, Juárez-Rojop IE, Torres- Lopez JE, Mendez JD, Aguilar-Mariscal H, et al. Differential effects of high-carbohydrate and high-fat diet composition on metabolic control and insulin resistance in normal rats. Int J Environ Res Public Health. 2012;9(5):1663-76. https://doi.org/10.3390/ijerph9051663 PMid:22754464 DOI: https://doi.org/10.3390/ijerph9051663

Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Madhavan CN, Agrawal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. Biomed Res Int. 2013;2013:752870. https://doi.org/10.1155/2013/752870 PMid:24151620 DOI: https://doi.org/10.1155/2013/752870

El-Sheikh N, El Fattah HM. Counteracting methionine choline-deficient diet-induced fatty liver by administration of turmeric and silymarin. J Appl Sci Res. 2011;7(12):1812-20.

Roza NA, Possignolo LF, Palanch AC, Gontijo JA. Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats. Food Nutr Res. 2016;60:28536. https://doi.org/10.3402/fnr.v60.28536 PMid:26880072 DOI: https://doi.org/10.3402/fnr.v60.28536

Liu C, Li Y, Zuo G, Xu W, Gao H, Yang Y, et al. Oleanolic acid diminishes liquid fructose-induced fatty liver in rats: Role of modulation of hepatic sterol regulatory element-binding protein- 1c-mediated expression of genes responsible for de novo fatty acid synthesis. Evid Based Complement Alternat Med. 2013;2013:534084. https://doi.org/10.1155/2013/534084 PMid:23737835 DOI: https://doi.org/10.1155/2013/534084

Haroun MA, Elsayed LA, Rashed LA, Mohammed MA. The effect of high fat diet and high fructose intake on insulin resistance and GLP-1 in experimental animals. Med J Cairo Univ. 2011;79(2):23-32.

Tranchida F, Tchiakpe L, Rakotoniaina Z, Deyris V, Ravion O, Hiol A. Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats. J Zhejiang Univ Sci B. 2012;13(4):307-17. https://doi.org/10.1631/jzus.b1100090902 PMid:22467372 DOI: https://doi.org/10.1631/jzus.B1100090

Tyszka-Czochara M, Gdula-Argasińska J, Paśko P, Librowski T, Gawel M, Olbert M, et al. Fructose affects fatty acids profile in liver cells in vitro and in vivo models in rats. Med Int Rev. 2014;26(102):42-6.

Crofts CA, Zinn C, Wheldon MC, Schofield GM. Hyperinsulinemia: A unifying theory of chronic disease? Diabesity. 2015;1(4):34- 43. https://doi.org/10.15562/diabesity.2016.29 DOI: https://doi.org/10.15562/diabesity.2015.19

Thomas DD, Corkey BE, Istfan N, Apovian CM. Hyperinsulinemia: An early indicator of metabolic dysfunction. J Endocr Soc. 2019;3(9):1727-47. https://doi.org/10.1210/js.2019-00065 PMid:31528832 DOI: https://doi.org/10.1210/js.2019-00065

Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients. 2018;10(10):1502. https://doi.org/10.3390/nu10101502 DOI: https://doi.org/10.3390/nu10101502

PMid:30322196

Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W. A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of non-alcoholic fatty liver disease in mice. Scientifica (Cairo). 2016;2016:5029414. https://doi.org/10.1155/2016/5029414 PMid:27019761 DOI: https://doi.org/10.1155/2016/5029414

Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40(5):257-62. PMid:29179880 DOI: https://doi.org/10.1016/j.bj.2017.06.007

Hashidume T, Sasaki T, Inoue J, Sato R. Consumption of soy protein isolate reduces hepatic SREBP-1c and lipogenic gene expression in wild-type mice, but not in FXR-deficient mice. Biosci Biotechnol Biochem. 2011;75(9):1702-7. https://doi. org/10.1271/bbb.110224 PMid:21897047 DOI: https://doi.org/10.1271/bbb.110224

Downloads

Published

2020-11-12

How to Cite

1.
Sunarti S, Santoso U, Pramana AAC, Huriyati E, Rubi DS. High Fiber and Beta Carotene from Sweet Potatoes and Pumpkin Improve Insulin Resistance by Inhibition of Sterol Regulatory Binding Protein 1c in Liver of Hypertriglyceridemic Rats. Open Access Maced J Med Sci [Internet]. 2020 Nov. 12 [cited 2024 Nov. 23];8(A):898-903. Available from: https://oamjms.eu/index.php/mjms/article/view/5354