The Correlation between Serum Vascular Endothelial Growth Factor and Lipid Profile in Type 2 Diabetes Mellitus

Authors

  • Rusdiana Rusdiana Department of Biochemistry, Medical Faculty, Universitas Sumatera Utara, Medan, Indonesia http://orcid.org/0000-0002-7308-9291
  • Sry Suryani Widjaja Department of Biochemistry, Medical Faculty, Universitas Sumatera Utara, Medan, Indonesia
  • Rina Amelia Department of Public Health, Medical Faculty, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.5402

Keywords:

Diabetes Mellitus Type 2, Blood Sugar Levels, Glycated hemoglobin, Lipid profile, Vascular endothelial growth factor

Abstract

BACKGROUND: Diabetes mellitus is a chronic metabolic disease characterized by increased blood sugar levels (BSLs). Elevated BSL was to be reliably measured by measuring the concentration of hemoglobin glycosylate (HbA1C). Chronic hyperglycemia can result in damage to endothelial cells resulting in disruption of vascular hemostasis leading to complications in the form of vascular disorders. Endothelial damage or dysfunction will increase cytokines, one of which is vascular endothelial growth factor (VEGF), which induces angiogenesis.

AIM: In our study we wanted to investigate the correlation between serums VEGF with lipid profile at type 2 diabetes mellitus patients in primary health care in Medan city of North Sumatera, Indonesia.

MATERIALS AND METHODS: This study conducted at type 2 diabetes mellitus with the cross-sectional analytic method. The inclusion criteria of the samples were all the patients diagnosed with type 2 diabetes mellitus, both the sexes. Body mass index (BMI), blood pressure, duration of disease, and family history were recorded. The laboratory parameters, including fasting blood sugar, HbA1c, high-density lipoprotein, low-density lipoprotein, triglycerides (TG), and cholesterol, were examined by Paramita Laboratory Clinic and VEGF and hypoxia-inducible factor (HIF)-1α, we examined by ELISA methods in the laboratory Medical Faculty, Universitas Sumatera Utara. The data of the samples were processed using a computer with the SPSS program.

RESULTS: There was a significant correlation between VEGF and BMI, TG, and HIF-1α. The statistical analysis using correlation test found that there was a significant correlation between VEGF and BMI, TG, HIF-1α _type 2 diabetes mellitus patients (p < 0.005).

CONCLUSION: Therefore, our study showed that the correlation between VEGF and lipid profile (TG), BMI, and HIF-1α _was a positive correlation, which showed a directional relationship, if the VEGF level is high then the BMI, TG and HIF-1α _values are also high.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Abou-Seif MA, Youssef AA. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta. 2004;346(2):161- 70. https://doi.org/10.1016/j.cccn.2004.03.030 PMid:15256317

Alberti KG, Zimmet P. Epidemiology: Global burden of disease-where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258-60. https://doi.org/10.1038/nrendo.2013.54 PMid:23478328

Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853-76. PMid:18200806.

Ferrara N, Gerber HP, Le Couter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669-76. https://doi.org/10.1038/nm0603-669 PMid:12778165

Zielonka TM. Angiogenesis. Part II. Factors that modulate the process of formation of new blood vessels. Allergy Asthma Immunol. 2004;9(1):25-31.

Jansson PA. Endothelial dysfunction in insulin resistance and Type 2 diabetes. J Intern Med. 2007;262(2):173-83. https://doi.org/10.1111/j.1365-2796.2007.01830.x PMid:17645585

Garcia-Maceira P, Mateo J. Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signaling pathway in human cervical and hepatoma cancer cells: Implications for anticancer therapy. Oncogene. 2009;28(3):313-24. https://doi.org/10.1038/onc.2008.398 PMid:18978810

Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Progr Retinal Eye Res. 2003;22(1):1-29. https://doi.org/10.1016/s1350-9462(02)00043-5 PMid:12597922

Pacholczyk M, Ferenc T, Kowalski J. The metabolic syndrome. Part II: Its mechanisms of development and its complications. Postepy Hig Med Dosw. 2008;62:543-558. PMid:18936730

Kieć-Wilk B, Dudek W, Dembińska-Kieć A. Nutrigenomics, angiogenesis and obesity. Acta Angiol. 2006;12(4):141-8.

Peczyńska J, Urban M, Urban B, Głowińska B, Florys B. Assessment of growth factor levels in adolescents with Type 1 diabetes mellitus and the beginning of diabetic microangiopathy. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2004;10(1):41-8. PMid:15355738

Mahdy RA, Nada WM, Hadhoud KM, El-Tarhony SA. The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye. 2010;24(10):1576-84. https://doi.org/10.1038/eye.2010.86 PMid:20508651

Wada H, Ura S, Kitajka S, Satoh-Asahara N, Horie T, Ono K, et al. Distinct characteristics of circulating vascular endothelial growth factor-A and C levels in human subjects. PLoS One. 2011;6(12):e29351. https://doi.org/10.1371/journal.pone.0029351 PMid:22206010

Martynova EV, Valiullina AH, Gusev OA, Davidyuk YN, Garanina EE, Shakirova VG, et al. High triglycerides are associated with low thrombocyte counts and high VEGF in the nephropathic epidemic. J Immunol Res. 2016;2016:8528270. https://doi.org/10.1155/2016/8528270 PMid:28053993

Sun X, Zhang H, Liu J, Wang G. Serum vascular endothelial growth factor level is elevated in patients with impaired glucose tolerance and Type 2 diabetes mellitus. J Int Med Res. 2019;47(11):5584-92. https://doi.org/10.1177/0300060519872033 PMid:31547733

Miyazawa-Hoshimoto S, Takahashi K, Bujo H, Hashimoto N, Saito Y. Elevated serum vascular endothelial growth factor is associated with visceral fat accumulation in human obese subjects. Diabetologia. 2003;46(11):1483-8. https://doi.org/10.1007/s00125-003-1221-6 PMid:14534780

Loebig M, Klement J, Schmoller A, Betz S, Heuck N, Schweiger U, et al. Evidence for a relationship between VEGF and BMI independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PLoS One. 2010;5(9):e12610. https://doi.org/10.1371/journal.pone.0012610 PMid:20830305

Nammi S, Koka S, Chinnala KM, Boini KM. Obesity: An overview on its current perspectives and treatment options. Nutr J. 2004;3:3. https://doi.org/10.1186/1475-2891-3-3 PMid:15084221

Anderwald C, Pfeiler G, Nowotny P, Anderwald-Stadler M, Krebs M, Bischof MG, et al. Glucose turnover and intima media thickness of internal carotid artery in Type 2 diabetes offspring. Eur J Clin Invest. 2008;38(4):227-37. https://doi.org/10.1111/j.1365-2362.2008.01932.x PMid:18339003

Zehetner C, Kirchmair R, Kralinger M, Kieselbach G. Correlation of vascular endothelial growth factor plasma levels and glycemic control in patients with diabetic retinopathy. Acta Ophthalmol. 2013;91(6):e470-3. https://doi.org/10.1111/aos.12081 PMid:23452413

Zhang Q, Fang W, Ma L, Wang ZD, Yang YM, Lu YQ. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in Type-2: A cohort study diabetes. Medicine. 2018;97(15):e0415 https://doi.org/10.1016/j.juro.2018.02.2987 PMid:29642210

Brychtova S, Bezdekova M, Brychta T, Tichy M. The role of vascular endothelial growth factors and their receptors in malignant melanomas. Neoplasma. 2008;55(4):273-9. PMid:18505336

Schlingemann RO, Van Noorden CJ, Diekman MJ, Tiller A, Meijers JC, Koolwijk P, et al. VEGF levels in plasma in relation to platelet activation, glycemic control, and microvascular complications in Type 1 diabetes. Diabetes Care. 2013;36(6):1629-34. https://doi.org/10.2337/dc12-1951 PMid:23321217

Sandhofer A, Tatarczyk T, Kirchmair R, Iglseder B, Paulweber B, Patsch JR, et al. Are plasma VEGF and its soluble receptor sFlt-1 atherogenic risk factors? Cross-sectional data from the SAPHIR study. Atherosclerosis. 2009;206(1):265-9. https://doi.org/10.1016/j.atherosclerosis.2009.01.031 PMid:19237157

Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44(11):1973-88. https://doi.org/10.1007/s001250100001 PMid:11719828

Jiang F, Tang YT, Guo L, Jiao XY. The role of insulin-like growth factor I and hypoxia-inducible factor 1α _in vascular endothelial growth factor expression in Type 2 diabetes. Ann Clin Lab Sci. 2013;43(1):37-44. PMid:23462604

Downloads

Published

2020-11-02

How to Cite

1.
Rusdiana R, Widjaja SS, Amelia R. The Correlation between Serum Vascular Endothelial Growth Factor and Lipid Profile in Type 2 Diabetes Mellitus. Open Access Maced J Med Sci [Internet]. 2020 Nov. 2 [cited 2024 Nov. 21];8(B):1131-5. Available from: https://oamjms.eu/index.php/mjms/article/view/5402