The Effectiveness of Probiotics against Viral Infections: A Rapid Review with Focus on SARS-CoV-2 Infection
DOI:
https://doi.org/10.3889/oamjms.2020.5483Keywords:
Adjunctive therapy, Bifidobacterium, COVID-19, Lactobacillus, ProbioticsAbstract
Viral infections have gained great attention following the rapid emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic around the globe. Even with the continuous research on developing vaccines and antiviral agents against various viral infections, no specific treatment or vaccine has been approved for many enteric or respiratory viral infections; in addition, the efficiency of currently available treatments is still limited. One of the most reliable and recommended strategies to control viral infections is prevention. Recently, intense studies are focusing on a promising approach for treating/preventing various viral infections using probiotics. As per the World Health Organization (WHO), probiotics can be defined as “live microorganisms which, when administered in adequate amount, confer a health benefit to the host.” The use of probiotics is a simple, cost-effective, and safe strategy to prevent viral infections, specifically; respiratory tract and intestinal ones, by different means such as stimulating the host’s immune response or modulating gut microbiota. In this rapid review, we emphasize the protective effects of probiotics against viral infections and proposed mechanisms for protection that might offer a novel and cost-effective treatment against current and newly discovered viruses like SARS-CoV-2.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Metchnikoff E. Prolongation of Life, Optimistic Studies. New York, London: Putman’s Sons; 1908.
Kollath W. Nutrition and the tooth system; general review with special reference to vitamins. Dtsch Zahnarztl Z 1953;8(11):Suppl 7-16. PMid:13068115
Lilly DM, Stillwell RH. Probiotics: Growth-promoting factors produced by microorganisms. Science 1965;147(3659):747-8. https://doi.org/10.1126/science.147.3659.747 PMid:14242024 DOI: https://doi.org/10.1126/science.147.3659.747
World Health Organization. Evaluation of Certain Food Additives and Contaminants. 57th Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: Biosphere Health Organization; 2002. https://doi.org/10.1002/food.19910350833 DOI: https://doi.org/10.1002/food.19910350833
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, et al. Probiotics: Versatile bioactive components in promoting human health. Medicina (Kaunas) 2020;56(9):433. https://doi.org/10.3390/medicina56090433 PMid:32867260 DOI: https://doi.org/10.3390/medicina56090433
Osvath R. FDA’s food advisory committee to discuss criteria for safety of probiotics. Food Chem News 2000;42:12.
Bhattacharyya BK. Emergence of probiotics in therapeutic applications. Int J Pharm Sci Nanotechnol 2009;2(1):383-9. DOI: https://doi.org/10.37285/ijpsn.2009.2.1.1
Jahanshahi M, Dana PM, Badehnoosh B, Asemi Z, Hallajzadeh J, Mansournia MA, et al. Anti-tumor activities of probiotics in cervical cancer. J Ovarian Res 2020;13(1):68. https://doi.org/10.1186/s13048-020-00668-x PMid:32527332 DOI: https://doi.org/10.1186/s13048-020-00668-x
Kos B, Šušković J, Vuković S, Sǐmpraga M, Frece J, Matošić S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 2003;94(6):981-7. https://doi.org/10.1046/j.1365-2672.2003.01915.x PMid:12752805 DOI: https://doi.org/10.1046/j.1365-2672.2003.01915.x
Aly SM, Ahmed YA, Ghareeb AA, Mohamed MF. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 2008;25(1-2):128-36. https://doi.org/10.1016/j.fsi.2008.03.013 PMid:18450477 DOI: https://doi.org/10.1016/j.fsi.2008.03.013
Bull M, Plummer S, Marchesi J, Mahenthiralingam E. The life history of Lactobacillus acidophilus as a probiotic: A tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 2013;349(2):77-87. https://doi.org/10.1111/1574-6968.12293 PMid:24152174 DOI: https://doi.org/10.1111/1574-6968.12293
Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr 2010;104(12):1831-8. https://doi.org/10.1017/s0007114510002874 PMid:20815975 DOI: https://doi.org/10.1017/S0007114510002874
Kim SJ, Cho SY, Kim SH, Song OJ, Shin IS, Cha DS, et al. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT Food Sci Technol 2008;41(3):493-500. https://doi.org/10.1016/j.lwt.2007.03.025 DOI: https://doi.org/10.1016/j.lwt.2007.03.025
Ng EW, Yeung M, Tong PS. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus. Int J Food Microbiol 2011;145(1):169-75. https://doi.org/10.1016/j.ijfoodmicro.2010.12.006 PMid:21196060 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.12.006
Klein G, Pack A, Bonaparte C, Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 1998;41(2):103-25. https://doi.org/10.1016/s0168-1605(98)00049-x PMid:9704860 DOI: https://doi.org/10.1016/S0168-1605(98)00049-X
Phillips M, Kailasapathy K, Tran L. Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int J Food Microbiol 2006;108(2):276-80. https://doi.org/10.1016/j.ijfoodmicro.2005.12.009 PMid:16478637 DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.12.009
Yaeshima T, Takahashi S, Ishibashi N, Shimamura S. Identification of bifidobacteria from dairy products and evaluation of a microplate hybridization method. Int J Food Microbiol 1996;30(3):303-13. https://doi.org/10.1016/0168-1605(96)00956-7 PMid:8854183 DOI: https://doi.org/10.1016/0168-1605(96)00956-7
Groeger D, O’Mahony L, Murphy EF, Bourke JF, Dinan TG, Kiely B, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013;4(4):325-39. https://doi.org/10.4161/gmic.25487 PMid:23842110 DOI: https://doi.org/10.4161/gmic.25487
O’Mahony D, Murphy S, Boileau T, Park J, O’Brien F, Groeger D, et al. Bifidobacterium animalis AHC7 protects against pathogeninduced NF-κB activation in vivo. BMC Immunol 2010;11(1):63. https://doi.org/10.1186/1471-2172-11-63 PMid:21176205 DOI: https://doi.org/10.1186/1471-2172-11-63
Strozzi GP, Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 2008;42(Suppl 3 Pt 2):S179-84. https://doi.org/10.1097/mcg.0b013e31818087d8 PMid:18685499 DOI: https://doi.org/10.1097/MCG.0b013e31818087d8
Quigley EM. Bifidobacterium longum. In: The Microbiota in Gastrointestinal Pathophysiology. Amsterdam, Netherlands: Elsevier; 2017. p. 139-41. https://doi.org/10.1016/b978-0-12-804024-9.00016-1 DOI: https://doi.org/10.1016/B978-0-12-804024-9.00016-1
Tanner SA, Chassard C, Zihler Berner A, Lacroix C. Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog 2014;6(1):44. https://doi.org/10.1186/s13099-014-0044-y PMid:25364390 DOI: https://doi.org/10.1186/s13099-014-0044-y
Nueno-Palop C, Narbad A. Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol 2011;145(2-3):390-4. https://doi.org/10.1016/j.ijfoodmicro.2010.12.029 PMid:21315470 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.12.029
Simpson KW, Rishniw M, Bellosa M, Liotta J, Lucio A, Baumgart M, et al. Influence of Enterococcus faecium SF68 probiotic on giardiasis in dogs. J Vet Intern Med 2009;23(3):476-81. https://doi.org/10.1111/j.1939-1676.2009.0283.x PMid:19298607 DOI: https://doi.org/10.1111/j.1939-1676.2009.0283.x
Kimoto H, Kurisaki J, Tsuji NM, Ohmomo S, Okamoto T. Lactococci as probiotic strains: Adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol 1999;29(5):313-6. https://doi.org/10.1046/j.1365-2672.1999.00627.x PMid:10664972 DOI: https://doi.org/10.1046/j.1365-2672.1999.00627.x
Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 2018;10(445):eaao2586. https://doi.org/10.1126/scitranslmed.aao2586 PMid:29899022 DOI: https://doi.org/10.1126/scitranslmed.aao2586
Daba H, Pandian S, Gosselin JF, Simard RE, Huang J, Lacroix C. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl Environ Microbiol 1991;57(12):3450-5. https://doi.org/10.1128/aem.57.12.3450-3455.1991 PMid:1785922 DOI: https://doi.org/10.1128/aem.57.12.3450-3455.1991
Barbosa J, Borges S, Teixeira P. Pediococcus acidilactici as a potential probiotic to be used in food industry. Int J Food Sci Technol 2015;50(5):1151-7. https://doi.org/10.1111/ijfs.12768 DOI: https://doi.org/10.1111/ijfs.12768
Huang HY, Huang SY, Chen PY, King VA, Lin YP, Tsen JH. Basic characteristics of Sporolactobacillus inulinus BCRC 14647 for potential probiotic properties. Curr Microbiol 2007;54(5):396-404. https://doi.org/10.1007/s00284-006-0496-5 PMid:17387552 DOI: https://doi.org/10.1007/s00284-006-0496-5
Uriot O, Denis S, Junjua M, Roussel Y, Dary-Mourot A, Blanquet-Diot S. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate? J Funct Foods 2017;37:74-89. https://doi.org/10.1016/j.jff.2017.07.038 DOI: https://doi.org/10.1016/j.jff.2017.07.038
Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM. Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 2004;70(4):2161-71. https://doi.org/10.1128/aem.70.4.2161-2171.2004 PMid:15066809 DOI: https://doi.org/10.1128/AEM.70.4.2161-2171.2004
Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 2008;105(2):510-20. https://doi.org/10.1111/j.1365-2672.2008.03773.x PMid:18312567 DOI: https://doi.org/10.1111/j.1365-2672.2008.03773.x
Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, et al. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 2004;40(3):223-9. https://doi.org/10.1016/s0928-8244(03)00368-7 PMid:15039098 DOI: https://doi.org/10.1016/S0928-8244(03)00368-7
Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 2017;8(1):15028. https://doi.org/10.1038/ncomms15028 PMid:28398304 DOI: https://doi.org/10.1038/ncomms15028
Cousin FJ, Jouan-Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne-Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget 2016;7(6):7161-78. https://doi.org/10.18632/oncotarget.6881 PMid:26771233 DOI: https://doi.org/10.18632/oncotarget.6881
Pontier-Bres R, Prodon F, Munro P, Rampal P, Lemichez E, Peyron JF, et al. Modification of Salmonella typhimurium motility by the probiotic yeast strain Saccharomyces boulardii. PLoS One 2012;7(3):e33796. https://doi.org/10.1371/journal.pone.0033796 PMid:22442723 DOI: https://doi.org/10.1371/journal.pone.0033796
Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: From fundamental to novel applications. Front Microbiol 2012;3:421. https://doi.org/10.3389/fmicb.2012.00421 PMid:23267352 DOI: https://doi.org/10.3389/fmicb.2012.00421
Ang LY, Too HK, Tan EL, Chow TK, Shek PC, Tham E, et al. Antiviral activity of Lactobacillus reuteri protectis against coxsackievirus a and enterovirus 71 infection in human skeletal muscle and colon cell lines. Virol J 2016;13(1):111. https://doi.org/10.1186/s12985-016-0633-0 PMid:27341804 DOI: https://doi.org/10.1186/s12985-016-0567-6
Galán NN, Rubiano JC, Reyes FA, Duarte KP, Cárdenas SP, Fernandez MF. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP 4 protein production. J Appl Microbiol 2016;120(4):1041-51. https://doi.org/10.1111/jam.13069 PMid:26801008 DOI: https://doi.org/10.1111/jam.13069
Starosila D, Rybalko S, Varbanetz L, Ivanskaya N, Sorokulova I. Anti-influenza activity of a Bacillus subtilis probiotic strain. Antimicrob Agents Chemother 2017;61(7):e00539-17. https://doi.org/10.1128/aac.00539-17 PMid:28416546 DOI: https://doi.org/10.1128/AAC.00539-17
Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep 2019;9(1):4812. https://doi.org/10.1038/s41598-019-39602-7 PMid:30886158 DOI: https://doi.org/10.1038/s41598-019-39602-7
Gorbalenya AE, Baker SC, Baric RS, Groot RJ De, Gulyaeva AA, Haagmans BL, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. DOI: https://doi.org/10.1038/s41564-020-0695-z
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016;3(1):237-61. https://doi.org/10.2174/1871530320666200427112902 PMid:27578435 DOI: https://doi.org/10.1146/annurev-virology-110615-042301
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382(8):727-33. PMid:31978945 DOI: https://doi.org/10.1056/NEJMoa2001017
Magrone T, Magrone M, Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target a perspective. Endocr Metab Immune Disord Drug Targets 2020;20(6):807-11. https://doi.org/10.2174/1871530320666200427112902 PMid:32338224 DOI: https://doi.org/10.2174/1871530320666200427112902
Al Kassaa I, Hober D, Hamze M, Chihib NE, Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins 2014;6(3-4):177-85. https://doi.org/10.1007/s12602-014-9162-6 PMid:24880436 DOI: https://doi.org/10.1007/s12602-014-9162-6
Prabhurajeshwar C, Chandrakanth K. Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic lactobacilli strains isolated from commercial yoghurt. Clin Nutr Exp 2019;23:97-115. https://doi.org/10.1016/j.yclnex.2018.10.001 DOI: https://doi.org/10.1016/j.yclnex.2018.10.001
Lin TH, Pan TM. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. J Microbiol Immunol Infect 2019;52(3):409-17. https://doi.org/10.1016/j.jmii.2017.08.003 PMid:28863970 DOI: https://doi.org/10.1016/j.jmii.2017.08.003
Abbasiliasi S, Tan JS, Ibrahim TA, Bashokouh F, Ramakrishnan NR, Mustafa S, et al. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv 2017;7(47):29395-420. https://doi.org/10.1039/c6ra24579j DOI: https://doi.org/10.1039/C6RA24579J
Šušković J, Kos B, Beganović J, Pavunc AL, Habjanič K, Matoć S. Antimicrobial activity the most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol 2010;48(3):296-307.
El-khawas K, Hassaan H. Control of food poisoning bacteria during manufacturing of acid cheese using some organic acids. Assiut Vet Med J 2015;145:40-6. DOI: https://doi.org/10.21608/avmj.2015.170181
Lorca GL, de Valdez GF. In: Ljungh Å, Wadström T, editors. Lactobacillus Molecular Biology: From Genomics to Probiotics. Norfolk, United Kingdom: Caister Academic Press; 2009. p. 115-37.
Martin LS, McDougal JS, Loskoski SL. Disinfection and inactivation of the human T lymphotropic virus Type III/lymphadenopathy-associated virus. J Infect Dis 1985;152(2):400-3. https://doi.org/10.1128/aem.53.4.708-709.1987 PMid:2993438 DOI: https://doi.org/10.1093/infdis/152.2.400
Tuyama AC, Cheshenko N, Carlucci MJ, Li J, Goldberg CL, Waller DP, et al. ACIDFORM inactivates herpes simplex virus and prevents genital herpes in a mouse model: Optimal candidate for microbicide combinations. J Infect Dis 2006;194(6):795-803. https://doi.org/10.1086/506948 PMid:16941346 DOI: https://doi.org/10.1086/506948
Digaitiene A, Hansen ÅS, Juodeikiene G, Eidukonyte D, Josephsen J. Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillus subtilis and fungi. J Appl Microbiol 2012;112(4):732-42. https://doi.org/10.1111/j.1365-2672.2012.05249 PMid:22313683 DOI: https://doi.org/10.1111/j.1365-2672.2012.05249.x
Ge J, Sun Y, Xin X, Wang Y, Ping W. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice. Sci Rep 2016;6(1):19366. https://doi.org/10.1038/srep19366 PMid:26763314 DOI: https://doi.org/10.1038/srep19366
Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front Microbiol 2014;5:241. https://doi.org/10.3389/fmicb.2014.00683] PMid:24904554 DOI: https://doi.org/10.3389/fmicb.2014.00241
Yusuf MA. Lactic acid bacteria bacteriocin producer: A mini review. IOSR J Pharm 2013;3(4):44-50. DOI: https://doi.org/10.9790/3013-034104450
Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, et al. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol 2016;7:464. https://doi.org/10.3389/fmicb.2016.00464 PMid:27148172 DOI: https://doi.org/10.3389/fmicb.2016.00464
Caramia G, Silvi S. Probiotics: From the ancient wisdom to the actual therapeutical and nutraceutical perspective. In: Probiotic Bacteria and Enteric Infections. Dordrecht: Springer Netherlands; 2011. p. 3-37. https://doi.org/10.1007/978-94-007-0386-5_1 DOI: https://doi.org/10.1007/978-94-007-0386-5_1
Wachsman MB, Castilla V, De Ruiz Holgado AP, De Torres RA, Sesma F, Coto CE. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 2003;58(1):17-24. https://doi.org/10.1016/s0166-3542(02)00099-2 PMid:12719003 DOI: https://doi.org/10.1016/S0166-3542(02)00099-2
Arena MP, Elmastour F, Sane F, Drider D, Fiocco D, Spano G, et al. Inhibition of coxsackievirus B4 by Lactobacillus plantarum. Microbiol Res 2018;210:59-64. https://doi.org/10.1016/j.micres.2018.03.008 PMid:29625659 DOI: https://doi.org/10.1016/j.micres.2018.03.008
Serkedjieva J, Danova S, Ivanova I. Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Appl Biochem Biotechnol 2000;88(1-3):285-98. https://doi.org/10.1385/abab:88:1-3:285 DOI: https://doi.org/10.1385/ABAB:88:1-3:285
Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, et al. Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus Type 1. Probiotics Antimicrob Proteins 2013;5(1):26-35. https://doi.org/10.1007/s12602-012-9123-x PMid:23637711 DOI: https://doi.org/10.1007/s12602-012-9123-x
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010;4(8):118-26. https://doi.org/10.4103/0973-7847.70902 PMid:22228951 DOI: https://doi.org/10.4103/0973-7847.70902
Martin H, Maris P. Synergism between hydrogen peroxide and seventeen acids against six bacterial strains. J Appl Microbiol 2012;113(3):578-90. https://doi.org/10.1111/j.1365-2672.2012.05364.x PMid:22716768 DOI: https://doi.org/10.1111/j.1365-2672.2012.05364.x
Baez A, Shiloach J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Fact 2014;13(1):181. https://doi.org/10.1186/s12934-014-0181-5 PMid:25547171 DOI: https://doi.org/10.1186/s12934-014-0181-5
Hertzberger R, Arents J, Dekker HL, Pridmore RD, Gysler C, Kleerebezem M, et al. H2O2 Production in species of the Lactobacillus acidophilus group: A central role for a novel NADH-dependent flavin reductase. Appl Environ Microbiol 2014;80(7):2229-39. https://doi.org/10.1128/aem.04272-13 DOI: https://doi.org/10.1128/AEM.04272-13
Serata M, Kiwaki M, Iino T. Functional analysis of a novel hydrogen peroxide resistance gene in Lactobacillus casei strain Shirota. Microbiology 2016;162(11):1885-94. https://doi.org/10.1099/mic.0.000379 PMid:27692041 DOI: https://doi.org/10.1099/mic.0.000379
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the agerelated ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016;2016:3164734. https://doi.org/10.1155/2016/3164734 PMid:26881021 DOI: https://doi.org/10.1155/2016/3164734
Singh AK, Hertzberger RY, Knaus UG. Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis. Redox Biol 2018;16:11-20. https://doi.org/10.1016/j.redox.2018.02.003 PMid:29471162 DOI: https://doi.org/10.1016/j.redox.2018.02.003
Newcomb WW, Brown JC. Internal catalase protects herpes simplex virus from inactivation by hydrogen peroxide. J Virol 2012;86(21):11931-4. https://doi.org/10.1128/jvi.01349-12 PMid:22915822 DOI: https://doi.org/10.1128/JVI.01349-12
Patel U, Gingerich A, Widman L, Sarr D, Tripp RA, Rada B. Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system. PLoS One 2018;13(7):e0199167. https://doi.org/10.1371/journal.pone.0199167 PMid:30044776 DOI: https://doi.org/10.1371/journal.pone.0199167
Conti C, Malacrino C, Mastromarino P. Inhibition of herpes simplex virus Type 2 by vaginal lactobacilli. J Physiol Pharmacol 2009;60 Suppl 6:19-26. PMid:20224147
Richards MR, Lowary TL. Chemistry and biology of galactofuranose-containing polysaccharides. Chembiochem 2009;10(12):1920-38. https://doi.org/10.1002/cbic.200900208 PMid:19591187 DOI: https://doi.org/10.1002/cbic.200900208
Ye S, Liu F, Wang J, Wang H, Zhang M. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr Polym 2012;87(1):764-770. https://doi.org/10.1016/j.carbpol.2011.08.057 DOI: https://doi.org/10.1016/j.carbpol.2011.08.057
Yang Y, Song H, Wang L, Dong W, Yang Z, Yuan P, et al. Antiviral effects of a probiotic metabolic mroducts against transmissible gastroenteritis coronavirus. J Probiotics Health 2017;5(3):184. https://doi.org/10.4172/2329-8901.1000184 DOI: https://doi.org/10.4172/2329-8901.1000184
Callahan LN, Phelan M, Mallinson M, Norcross MA. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus Type 1 without interfering with gp120-CD4 interactions. J Virol 1991;65(3):1543-50. https://doi.org/10.1128/jvi.65.3.1543-1550.1991 PMid:1995952 DOI: https://doi.org/10.1128/jvi.65.3.1543-1550.1991
Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C, et al. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza a virus in vitro. PLoS One 2013;8(1):e53043. https://doi.org/10.1371/journal.pone.0053043 PMid:23308134 DOI: https://doi.org/10.1371/journal.pone.0053043
Botić T, Danø T, Weingartl H, Cencič A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int J Food Microbiol 2007;115(2):227-34. https://doi.org/10.1016/j.ijfoodmicro.2006.10.044 PMid:17261339 DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.044
Mousavi E, Makvandi M, Teimoori A, Ataei A, Ghafari S, Samarbaf-Zadeh A. Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J Chinese Med Assoc 2018;81(3):262-7. https://doi.org/10.1016/j.jcma.2017.07.010 PMid:29037754 DOI: https://doi.org/10.1016/j.jcma.2017.07.010
Al Kassaa I, Hober D, Hamze M, Caloone D, Dewilde A, Chihib N, et al. Vaginal Lactobacillus gasseri CMUL57 can inhibit herpes simplex Type 2 but not coxsackievirus B4E2. Arch Microbiol 2015;197(5):657-64. https://doi.org/10.1007/s00203-015-1101-8 PMid:25752765 DOI: https://doi.org/10.1007/s00203-015-1101-8
Kawashima T, Hayashi K, Kosaka A, Kawashima M, Igarashi T, Tsutsui H, et al. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int Immunopharmacol 2011;11(12):2017-24. https://doi.org/10.1016/j.intimp.2011.08.013 PMid:21893216 DOI: https://doi.org/10.1016/j.intimp.2011.08.013
Gagnon M, Zihler A, Chassard C, Lacroix C. Ecology of probiotics and enteric protection. In: Probiotic Bacteria and Enteric Infections. Dordrecht: Springer Netherlands; 2011. p. 65-85. https://doi.org/10.1007/978-94-007-0386-5_3 DOI: https://doi.org/10.1007/978-94-007-0386-5_3
Hemaiswarya S, Raja R, Ravikumar R, Carvalho IS. Mechanism of action of probiotics. Braz Arch Biol Technol 2013;56(1):113-9. https://doi.org/10.1590/s1516-89132013000100015 DOI: https://doi.org/10.1590/S1516-89132013000100015
Izumo T, Maekawa T, Ida M, Noguchi A, Kitagawa Y, Shibata H, et al. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int Immunopharmacol 2010;10(9):1101-6. https://doi.org/10.1016/j.intimp.2010.06.012 PMid:20601181 DOI: https://doi.org/10.1016/j.intimp.2010.06.012
Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, et al. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol 2013;14(1):40. https://doi.org/10.1186/1471-2172-14-40 PMid:23947615 DOI: https://doi.org/10.1186/1471-2172-14-40
Yeo JM, Lee HJ, Kim JW, Lee JB, Park SY, Choi IS, et al. Lactobacillus fermentum CJL-112 protects mice against influenza virus infection by activating T-helper 1 and eliciting a protective immune response. Int Immunopharmacol 2014;18(1):50-4. https://doi.org/10.1016/j.intimp.2013.10.020 PMid:24201084 DOI: https://doi.org/10.1016/j.intimp.2013.10.020
Youn HN, Lee DH, Lee YN, Park JK, Yuk SS, Yang SY, et al. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antiviral Res 2012;93(1):138-43. https://doi.org/10.1016/j.antiviral.2011.11.004 PMid:22120759 DOI: https://doi.org/10.1016/j.antiviral.2011.11.004
Iwabuchi N, Xiao JZ, Yaeshima T, Iwatsuki K. Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice. Biol Pharm Bull 2011;34(8):1352-5. https://doi.org/10.1248/bpb.34.1352 PMid:21804232 DOI: https://doi.org/10.1248/bpb.34.1352
Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Prim 2017;3(1):17083. PMid:29119972 DOI: https://doi.org/10.1038/nrdp.2017.83
Guarino A, Dupont C, Gorelov AV, Gottrand F, Lee JK, Lin Z, et al. The management of acute diarrhea in children in developed and developing areas: From evidence base to clinical practice. Expert Opin Pharmacother 2012;13(1):17-26. https://doi.org/10.1517/14656566.2011.634800 PMid:22106840 DOI: https://doi.org/10.1517/14656566.2011.634800
Patel MM, Haber P, Baggs J, Zuber P, Bines JE, Parashar UD. Intussusception and rotavirus vaccination: A review of the available evidence. Expert Rev Vaccines 2009;8(11):1555-64. https://doi.org/10.1586/erv.09.106 PMid:19863248 DOI: https://doi.org/10.1586/erv.09.106
Yang Y, Pei J, Qin Z, Wei L. Efficacy of probiotics to prevent and/or alleviate childhood rotavirus infections. J Funct Foods 2019;52:90-9. https://doi.org/10.1016/j.jff.2018.10.036 DOI: https://doi.org/10.1016/j.jff.2018.10.036
Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 2016;172:72-84. https://doi.org/10.1016/j.vetimm.2016.01.003 PMid:26809484 DOI: https://doi.org/10.1016/j.vetimm.2016.01.003
Erdoğan Ö, Tanyeri B, Torun E, Gönüllü E, Arslan H, Erenberk U, et al. The comparition of the efficacy of two different probiotics in rotavirus gastroenteritis in children. J Trop Med 2012;2012:787240. https://doi.org/10.1155/2012/787240 PMid:22778754 DOI: https://doi.org/10.1155/2012/787240
Park M, Kwon B, Ku S, Ji G. The efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 probiotic treatment in infants with rotavirus infection. Nutrients 2017;9(8):887. https://doi.org/10.3390/nu9080887 PMid:28813007 DOI: https://doi.org/10.3390/nu9080887
Azagra-Boronat I, Massot-Cladera M, Knipping K, Garssen J, Ben Amor K, Knol J, et al. Strain-specific probiotic properties of bifidobacteria and lactobacilli for the prevention of diarrhea caused by rotavirus in a preclinical model. Nutrients 2020;12(2):498. https://doi.org/10.3390/nu12020498 PMid:32075234 DOI: https://doi.org/10.3390/nu12020498
Sindhu KN, Sowmyanarayanan TV, Paul A, Babji S, Ajjampur SS, Priyadarshini S, et al. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: A randomized, double-blind, placebo-controlled trial. Clin Infect Dis 2014;58(8):1107-15. https://doi.org/10.1093/cid/ciu065 PMid:24501384 DOI: https://doi.org/10.1093/cid/ciu065
Fernandez-Duarte KP, Olaya-Galán NN, Salas-Cárdenas SP, Lopez-Rozo J, Gutierrez-Fernandez MF. Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26-DSL): Probiotics able to block the in vitro adherence of rotavirus in MA104 cells. Probiotics Antimicrob Proteins 2018;10(1):56-63. https://doi.org/10.1007/s12602-017-9277-7 PMid:28432676 DOI: https://doi.org/10.1007/s12602-017-9277-7
Han YO, Jeong Y, You HJ, Ku S, Ji GE, Park MS. The antirotaviral activity of low molecular weight and non-proteinaceous substance from Bifidobacterium longum BORI cell extract. Microorganisms 2019;7(4):108. https://doi.org/10.3390/microorganisms7040108 PMid:31018530 DOI: https://doi.org/10.3390/microorganisms7040108
Lopman BA, Reacher MH, Vipond IB, Sarangi J, Brown DW. Clinical manifestation of norovirus gastroenteritis in health care settings. Clin Infect Dis 2004;39(3):318-24. https://doi.org/10.1086/421948 PMid:15306997 DOI: https://doi.org/10.1086/421948
Green KY. Norovirus infection in immunocompromised hosts. Clin Microbiol Infect 2014;20(8):717-23. PMid:25040790 DOI: https://doi.org/10.1111/1469-0691.12761
Murata T, Katsushima N, Mizuta K, Muraki Y, Hongo S, Matsuzaki Y. Prolonged norovirus shedding in infants. Pediatr Infect Dis J 2007;26(1):46-9. https://doi.org/10.1097/01.inf.0000247102.04997.e0 PMid:17195705 DOI: https://doi.org/10.1097/01.inf.0000247102.04997.e0
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: Recent advances and future perspectives. Future Virol 2015;10(7):899-913. https://doi.org/10.2217/fvl.15.57 PMid:26568768 DOI: https://doi.org/10.2217/fvl.15.57
Chen YL, Chang PJ, Huang CT. Small P particles formed by the Taiwan-native norovirus P domain overexpressed in Komagataella pastoris. Appl Microbiol Biotechnol 2018;102(22):9707-18. https://doi.org/10.1007/s00253-018-9331-8 PMid:30187100 DOI: https://doi.org/10.1007/s00253-018-9331-8
Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, et al. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J Virol 2013;87(17):9441-51. https://doi.org/10.1128/jvi.01060-13 PMid:23804639 DOI: https://doi.org/10.1128/JVI.01060-13
Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, et al. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Sci Rep 2016;6(1):25017. https://doi.org/10.1038/srep25017 PMid:27113278 DOI: https://doi.org/10.1038/srep25017
Rubio-del-Campo A, Coll-Marqués JM, Yebra MJ, Buesa J, Pérez-Martínez G, Monedero V, et al. Noroviral P-particles as an in vitro model to assess the interactions of noroviruses with probiotics. PLoS One 2014;9(2):e89586. https://doi.org/10.1371/journal.pone.0089586 PMid:24586892 DOI: https://doi.org/10.1371/journal.pone.0089586
Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev 2015;9:CD006895. https://doi.org/10.1002/14651858.cd006895.pub3 PMid:21901706 DOI: https://doi.org/10.1002/14651858.CD006895.pub3
Fonkwo PN. Pricing infectious disease. EMBO Rep 2008;9(Suppl 1):S13-7. PMid:18578017 DOI: https://doi.org/10.1038/embor.2008.110
Nichols WG, Campbell AJ, Boeckh M. Respiratory viruses other than influenza virus: Impact and therapeutic advances. Clin Microbiol Rev 2008;21(2):274-90. https://doi.org/10.1128/cmr.00045-07 PMid:18400797 DOI: https://doi.org/10.1128/CMR.00045-07
Robinson CM, Seto D, Jones MS, Dyer DW, Chodosh J. Molecular evolution of human species D adenoviruses. Infect Genet Evol 2011;11(6):1208-17. https://doi.org/10.1016/j.meegid.2011.04.031 PMid:21570490 DOI: https://doi.org/10.1016/j.meegid.2011.04.031
Langley GF, Anderson LJ. Epidemiology and prevention of respiratory syncytial virus infections among infants and young children. Pediatr Infect Dis J 2011;30(6):510-7. https://doi.org/10.1097/inf.0b013e3182184ae7 PMid:21487331 DOI: https://doi.org/10.1097/INF.0b013e3182184ae7
Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol 2013;14:282-93. https://doi.org/10.1016/j.meegid.2012.10.016 PMid:23201849 DOI: https://doi.org/10.1016/j.meegid.2012.10.016
Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med 2009;360(6):588-98. https://doi.org/10.1056/nejmoa0804877 PMid:19196675 DOI: https://doi.org/10.1056/NEJMoa0804877
Henderson J, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, Thomas HM. Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: A longitudinal birth cohort study. Pediatr Allergy Immunol 2005;16(5):386-92. https://doi.org/10.1111/j.1399-3038.2005.00298.x PMid:16101930 DOI: https://doi.org/10.1111/j.1399-3038.2005.00298.x
Higgins D, Trujillo C, Keech C. Advances in RSV vaccine research and development a global agenda. Vaccine 2016;34(26):2870-5. https://doi.org/10.1016/j.vaccine.2016.03.109 PMid:27105562 DOI: https://doi.org/10.1016/j.vaccine.2016.03.109
Openshaw PJ, Chiu C, Culley FJ, Johansson C. Protective and harmful immunity to RSV infection. Annu Rev Immunol 2017;35(1):501-32. https://doi.org/10.1146/annurev-immunol-051116-052206 PMid:28226227 DOI: https://doi.org/10.1146/annurev-immunol-051116-052206
Iwane MK, Prill MM, Lu X, Miller EK, Edwards KM, Hall CB, et al. Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children. J Infect Dis 2011;204(11):1702-10. https://doi.org/10.1093/infdis/jir634 PMid:22013207 DOI: https://doi.org/10.1093/infdis/jir634
Esneau C, Bartlett N, Bochkov YA. Rhinovirus structure, replication, and classification. In: Rhinovirus Infections. Amsterdam, Netherlands: Elsevier; 2019. p. 1-23. https://doi.org/10.1016/b978-0-12-816417-4.00001-9 DOI: https://doi.org/10.1016/B978-0-12-816417-4.00001-9
Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S, Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebocontrolled trial. J Allergy Clin Immunol 2014;133(2):405-13. https://doi.org/10.1016/j.jaci.2013.08.020 PMid:24131826 DOI: https://doi.org/10.1016/j.jaci.2013.08.020
Kumpu M, Kekkonen RA, Korpela R, Tynkkynen S, Järvenpää S, Kautiainen H, et al. Effect of live and inactivated Lactobacillus rhamnosus GG on experimentally induced rhinovirus colds: Randomised, double blind, placebo-controlled pilot trial. Benef Microbes 2015;6(5):631-9. https://doi.org/10.3920/bm2014.0164 PMid:26322544 DOI: https://doi.org/10.3920/BM2014.0164
Esposito S, Rigante D, Principi N. Do children’s upper respiratory tract infections benefit from probiotics? BMC Infect Dis 2014;14(1):194. https://doi.org/10.1186/1471-2334-14-194 PMid:24720809 DOI: https://doi.org/10.1186/1471-2334-14-194
Lehtoranta L, Pitkäranta A, Korpela R. Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis 2014;33(8):1289-302. https://doi.org/10.1007/s10096-014-2086-y PMid:24638909 DOI: https://doi.org/10.1007/s10096-014-2086-y
Howley PM, Knipe DM. Fields Virology: Emerging Viruses. Philadelphia, Pennsylvania, PA: Lippincott Williams and Wilkins; 2020.
Koutsakos M, Nguyen TH, Barclay WS, Kedzierska K. Knowns and unknowns of influenza B viruses. Future Microbiol 2016;11(1):119-35. https://doi.org/10.2217/fmb.15.120 PMid:26684590 DOI: https://doi.org/10.2217/fmb.15.120
Hayden FG. Pandemic influenza. Pediatr Infect Dis J 2004;23(11 Suppl):S262-9. PMid:15577582 DOI: https://doi.org/10.1097/01.inf.0000144680.39895.ce
Verity EE, Camuglia S, Agius CT, Ong C, Shaw R, Barr I, et al. Rapid generation of pandemic influenza virus vaccine candidate strains using synthetic DNA. Influenza Other Respi Viruses 2012;6(2):101-9. https://doi.org/10.1111/j.1750-2659.2011.00273.x PMid:21771285 DOI: https://doi.org/10.1111/j.1750-2659.2011.00273.x
Makino S, Sato A, Goto A, Nakamura M, Ogawa M, Chiba Y, et al. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci 2016;99(2):915-23. https://doi.org/10.3168/jds.2015-10376 PMid:26686726 DOI: https://doi.org/10.3168/jds.2015-10376
Nagai T, Makino S, Ikegami S, Itoh H, Yamada H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int Immunopharmacol 2011;11(12):2246-50. https://doi.org/10.1016/j.intimp.2011.09.012 PMid:21986509 DOI: https://doi.org/10.1016/j.intimp.2011.09.012
Goto H, Sagitani A, Ashida N, Kato S, Hirota T, Shinoda T, et al. Anti-influenza virus effects of both live and non-live Lactobacillus acidophilus L-92 accompanied by the activation of innate immunity. Br J Nutr 2013;110(10):1810-8. https://doi.org/10.1017/s0007114513001104 PMid:23594927 DOI: https://doi.org/10.1017/S0007114513001104
Mahooti M, Abdolalipour E, Salehzadeh A, Mohebbi SR, Gorji A, Ghaemi A. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World J Microbiol Biotechnol 2019;35(6):91. https://doi.org/10.1007/s11274-019-2667-0 PMid:31161259 DOI: https://doi.org/10.1007/s11274-019-2667-0
Robinson CM, Singh G, Lee JY, Dehghan S, Rajaiya J, Liu EB, et al. Molecular evolution of human adenoviruses. Sci Rep 2013;3(1):1812 PMid:23657240 DOI: https://doi.org/10.1038/srep01812
Waye MM, Sing CW. Anti-viral drugs for human adenoviruses. Pharmaceuticals 2010;3(10):3343-54. https://doi.org/10.3390/ph3103343 DOI: https://doi.org/10.3390/ph3103343
Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 2015;6(3):679-93. https://doi.org/10.1039/c4fo00529e PMid:25580594 DOI: https://doi.org/10.1039/C4FO00529E
BiliavskaL, Pankivska Y, Povnitsa O, Zagorodnya S. Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus Type 5. Medicina (B Aires) 2019;55(9):519. https://doi.org/10.3390/medicina55090519 PMid:31443536 DOI: https://doi.org/10.3390/medicina55090519
Cheung KS, Hung IF, Chan PP, Lung KC, Tso E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: Systematic review and meta-analysis. Gastroenterology 2020;159(1):81-95. https://doi.org/10.1053/j.gastro.2020.03.065 PMid:32251668 DOI: https://doi.org/10.1053/j.gastro.2020.03.065
Arshad MS, Khan U, Sadiq A, Khalid W, Hussain M, Yasmeen A, et al. Coronavirus disease (COVID-19) and immunity booster green foods: A mini review. Food Sci Nutr 2020;8(8):3971-6. https://doi.org/10.1002/fsn3.1719 PMid:32837716 DOI: https://doi.org/10.1002/fsn3.1719
de Araújo Morais AH, de Souza Aquino J, da Silva-Maia JK, de Lima Vale SH, Maciel BL, Passos TS. Nutritional status, diet and viral respiratory infections: Perspectives for severe acute respiratory syndrome coronavirus 2. Br J Nutr 2020;1:1-12. https://doi.org/10.1017/s0007114520003311 PMid:32843118 DOI: https://doi.org/10.1017/S0007114520003311
Chai W, Burwinkel M, Wang Z, Palissa C, Esch B, Twardziok S, et al. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch Virol 2013;158(4):799-807. https://doi.org/10.1007/s00705-012-1543-0 PMid:23188495 DOI: https://doi.org/10.1007/s00705-012-1543-0
Angurana SK, Bansal A. Probiotics and COVID-19: Think about the link. Br J Nutr 2020;1:1-26. https://doi.org/10.1017/s000711452000361x PMid:32921328 DOI: https://doi.org/10.1017/S000711452000361X
Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-ldrissi M, Bouachrine M. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J Biomol Struct Dyn 2020;1:1-9. https://doi.org/10.1080/07391102.2020.1758790 PMid:32306860 DOI: https://doi.org/10.1080/07391102.2020.1758790
Anwar F, Altayb HN, Al-Abbasi FA, Al-Malki AL, Kamal MA, Kumar V. Antiviral effects of probiotic metabolites on COVID-19. J Biomol Struct Dyn 2020;1:1-10. https://doi.org/10.1080/07391102.2020.1775123 PMid:32475223 DOI: https://doi.org/10.1080/07391102.2020.1775123
Baud D, Agri VD, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health 2020;8:186. https://doi.org/10.3389/fpubh.2020.00186 PMid:32574290 DOI: https://doi.org/10.3389/fpubh.2020.00186
Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, et al. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients 2020;12(6):1718. https://doi.org/10.3390/nu12061718 PMid:32521760 DOI: https://doi.org/10.3390/nu12061718
Inchingolo F, Dipalma G, Cirulli N, Cantore S, Saini RS, Altini V, et al. Microbiological results of improvement in periodontal condition by administration of oral probiotics. J Biol Regul Homeost Agents 2018;32(5):1323-8. PMid:30334433
Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res 2020;285:198018. https://doi.org/10.1016/j.virusres.2020.198018 PMid:32430279 DOI: https://doi.org/10.1016/j.virusres.2020.198018
Henrot C, Kuksin M. The intestinal virobiota, a new component in the interactions between the microbiota and the immune system. Med Sci (Paris) 2019;35(6-7):578-580. doi: 10.1051/medsci/2019113. DOI: https://doi.org/10.1051/medsci/2019113
Santacroce L. Letter in response to the article “enhancing immunity in viral infections, with special emphasis on COVID-19: A review” (Jayawardena et al.). Diabetes Metab Syndr Clin Res Rev 2020;14(5):927. https://doi.org/10.1016/j.dsx.2020.06.009 PMid:32585601 DOI: https://doi.org/10.1016/j.dsx.2020.06.009
Pillai A, Tan J, Paquette V, Panczuk J. Does probiotic bacteremia in premature infants impact clinically relevant outcomes? A case report and updated review of literature. Clin Nutr 2020;39(4):255-9. https://doi.org/10.1016/j.clnesp.2020.05.020 DOI: https://doi.org/10.1016/j.clnesp.2020.05.020
Ventoulis I, Sarmourli T, Amoiridou P, Mantzana P, Exindari M, Gioula G, et al. Bloodstream infection by Saccharomyces cerevisiae in two COVID-19 patients after receiving supplementation of Saccharomyces in the ICU. J Fungi 2020;6(3):98. https://doi.org/10.3390/jof6030098 PMid:32630111 DOI: https://doi.org/10.3390/jof6030098
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Jehan Abdul-Sattar Salman, Nibras Nazar Mahmood, Ban Oday Abdulsattar, Hussein Adil Abid (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0