Evaluation of Prognosis of Aortic Valve Stenosis: A New Approach Based on Transvalvular Energy Loss Index

Authors

  • Tanja Anguseva Filip II, Intensive Care, Skopje http://orcid.org/0000-0001-7022-2176
  • Zan Mitrev Zan Mitrev Clinic, Skopje, Republic of Macedonia
  • Predrag Milojevic Zan Mitrev Clinic, Skopje, Republic of Macedonia; University Clinic for Cardiovascular Surgery, University of Medicine, Belgrade, Serbia
  • Milka Zdravkovska University of Medical Science, University Goce Delchev, Shtip, Republic of Macedonia

DOI:

https://doi.org/10.3889/oamjms.2020.5498

Keywords:

aortic stenosis, transvalvular energy loss index, clinical outcome

Abstract

BACKGROUND: Estimation of aortic valve stenosis is not always sufficient based on standard parameters such as transvalvular pressure gradient (PG) or effective orifice area (EOA). We used transvalvular energy loss index (ELI) to provide more accurate information about myocardial reserve and patient’s prognosis.

AIM: The aim of the study was to present the benefit of using ELI as a parameter that provides a more accurate estimation of aortic stenosis (AS) severity and influence on ventricular function. Second objective was to evaluate the performance of this index when predicting the mortality rate of patients.

METHODS: In this follow-up trial from 2002 up 2020, we included 377 patients with reconstructive surgery of AS using bovine/equine pericardium, replacing valve cusps on patient’s aortic fibrous ring. Leaflets were implanted separately, using continuous sutures with 2 supported stitches at newly created commissure, without stent or sowing ring. Using transesophageal ultrasound, intraoperatively and postoperatively, we measured EOA, PG, dimensions of aortic annulus, and sinotubular junction of ascending aorta. Applying Bernoulli equation ELI = (EOA×AA)/(AA−EOA), we calculated the values of ELI.

RESULTS: The results showed that ELI is influenced by both flow rate and aortic cross-sectional area (AA). Energy loss is systematically higher (15 ± 2%) in large aorta. ELI coefficient accurately predicted energy loss in all situations (r2 = 0.98). ELI was superior to EOA in predicting endpoints, such as early death after surgery. ELI ≤0.42 cm2/m2 strongly correlates with a higher mortality rate.

CONCLUSION: ELI has potential to reflect severity of AS better than EOA. It correlates with preserved myocardial reserve. ELI can be used like a parameter for estimating the pre-operative risk of death in patients with moderate/severe AS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bonow RO, Carabello BA, Kanu C, de Leon AC, Faxon DP, Freed MD, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: A report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): Developed in collaboration with the society of cardiovascular anesthesiologists: Endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. Circulation. 2006;114(5):e84-231. https://doi. org/10.1016/j.jacc.2008.05.007 PMid:16880336 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.177303

Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron- Esquivias G, Baumgartner H, et al, The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-thoracic Surgery (EACTS). Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451-96. https://doi.org/10.1093/eurheartj/ehs109 PMid:22922415 DOI: https://doi.org/10.1093/eurheartj/ehs109

Garcia D, Pibarot P, Dumesnil JG, Sakr F, Durand LG. Assessment of aortic valve stenosis severity: A new index based on the energy loss concept. Circulation. 2000;101(7):765-71. https://doi.org/10.1161/01.cir.101.7.765 PMid:10683350

Bahlmann E, Gerdts E, Cramariuc D, Gohlke-Baerwolf C, Nienaber CA, Wachtell K, et al. Prognostic value of energy loss index in asymptomatic aortic stenosis. Circulation. 2013;127(10):1149-56. https://doi.org/10.1161/ circulationaha.112.078857 PMid:23357717 DOI: https://doi.org/10.1161/CIRCULATIONAHA.112.078857

Heinrich RS, Marcus RH, Ensley AE, Gibson DE, Yoganathan AP. Valve orifice area alone is an insufficient index of aortic stenosis severity: Effects of the proximal and distal geometry on transaortic energy loss. J Heart Valve Dis. 1999;8(5):509-15. PMid:10517392

Colan SD. Ventricular function in volume overload lesions. In: Fogel MA, editor. Ventricular Function and Blood Flow in Congenital Heart Disease. Philadelphia, PA: Blackwell; 2005. p. 205-22. DOI: https://doi.org/10.1002/9780470994849.ch12

Colan SD. Ventricular function in pressure overload lesions. In: Fogel MA, editor. Ventricular Function and Blood Flow in Congenital Heart Disease. Philadelphia, PA: Blackwell; 2005. p. 187-204.

Baumgartner H, Stefenelli T, Niederberger J, Schima H, Maurer G. Overestimation of catheter gradients by Doppler ultrasound in patients with aortic stenosis: A predictable manifestation of pressure recovery. J Am Coll Cardiol. 1999;33(6):1655-61. https://doi.org/10.1016/s0735-1097(99)00066-2 PMid:10334438 DOI: https://doi.org/10.1016/S0735-1097(99)00066-2

Garcia D, Dumesnil JG, Durand L, Kadem L, Pibarot P. Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon. J Am Coll Cardiol. 2003;41:435-42. https://doi.org/10.1016/s0735-1097(02)02764-x PMid:12575972 DOI: https://doi.org/10.1016/S0735-1097(02)02764-X

Yoganathan AP, Recusani F, Valdez-Cruz L, Sung HW, Sahn DJ. Oblique flow vectors from dispersing jets produce the velocity overestimation on angle corrected continuous wave Doppler studies: In vitro laser Doppler investigations. Circulation. 1987;76(4):355. DOI: https://doi.org/10.1161/01.CIR.76.3.657

Voelker W, Reul H, Stelzer T, Schmidt A, Karsch K. Pressure recovery in aortic stenosis: An in vitro study in a pulsatile flow model. J Am Coll Cardiol. 1992;20(7):1585-93. https://doi. org/10.1016/0735-1097(92)90454-u PMid:1452933 DOI: https://doi.org/10.1016/0735-1097(92)90454-U

Garcia D, Pibarot P, Dumesnil JG, Sakr F, Durand LG. Assessment of aortic valve stenosis severity: A new index based on the energy loss concept. Circulation. 2000;101(7):765-71. https://doi.org/10.1161/01.cir.101.7.765 PMid:10683350 DOI: https://doi.org/10.1161/01.CIR.101.7.765

Zoghbi WA, Farmer KL, Soto JG, Nelson JG, Quinones MA. Accurate non-invasive quantification of stenotic aortic valve area by Doppler echocardiography. Circulation. 1986;73(3):452-9. https://doi.org/10.1161/01.cir.73.3.452 PMid:3948355 DOI: https://doi.org/10.1161/01.CIR.73.3.452

Scotten L, Walker D, Dutton J. Modified gorlin equation for the diagnosis of mixed aortic valve pathology. J Heart Valve Dis. 2002;11(3):360-8. PMid:12056728

Garcia D, Pibarot P, Durand L. Analytical modelling of the instantaneous pressure gradient across the aortic valve. J Biomech. 2005;38(6):1303-11. https://doi.org/10.1016/j. jbiomech.2004.06.018 PMid:15863115 DOI: https://doi.org/10.1016/j.jbiomech.2004.06.018

Gjertsson P, Caidahl K, Svensson G, Wallentin I, Bech-Hanssen O. Important pressure recovery in patients with aortic stenosis and high Doppler gradients. Am J Cardiol. 2001;88(2):139-44. https://doi.org/10.1016/s0002-9149(01)01608-3 PMid:11448410 DOI: https://doi.org/10.1016/S0002-9149(01)01608-3

Gross-Sawicka E, Pringle T, Lipworth B. Aortoseptal angulation and left ventricular hypertrophy pattern: An echocardiographic study in patients with aortic valve stenosis. J Am Soc Echocardiogr. 1991;4(6):583-8. https://doi.org/10.1016/ s0894-7317(14)80217-4 PMid:1836950 DOI: https://doi.org/10.1016/S0894-7317(14)80217-4

White R, Obuchowski N, Gunawardena S, Lipchik E, Lever H, Van Dyke C, et al. Aortic inflow tract obstruction in hypertrophic cardiomyopathy: Presurgical and postsurgical evaluation by computed tomography magnetic resonance imaging. Am J Card Imaging. 1996;10(1):1-13. PMid:8680128

Come P, Pringle T, Lipworth B. Doppler evidence that true left ventricular to aortic pressure gradients exist in hypertrophic cardiomyopathy. Am Heart J. 1988;116(5):1253-61. https://doi. org/10.1016/0002-8703(88)90448-6 PMid:3189142 DOI: https://doi.org/10.1016/0002-8703(88)90448-6

Bermejo J, Edreman R, Feijoo J, Moreno MM, Gomez- Moreno P, Garcia-Fernendez MA. Clinical efficacy of Doppler-echocardiographic indices of aortic valve stenosis: A comparative test-based analysis of outcome. J Am Coll Cardiol. 2003;41(1):142-51. https://doi.org/10.1016/ s0735-1097(02)02627-x PMid:12570957

Tobin JR, Rahimtoola SH, Blundell PE, Swan HJ. Percentage of left ventricular stroke work loss. A simple hemodynamic concept for estimation of severity in valvular aortic stenosis. Circulation. 1967;35(5):868-79. https://doi.org/10.1161/01.cir.35.5.868 PMid:6021776 DOI: https://doi.org/10.1161/01.CIR.35.5.868

Oh JK, Taliercio CP, Holmes DR, Reeder GS, Bailey KR, Steward JB, et al. Prediction of the severity of aortic stenosis by Doppler aortic valve area determination: Prospective Doppler-catheterization correlation in 100 patients. J Am Coll Cardiol. 1988;11(6):1227-34. https://doi. org/10.1016/0735-1097(88)90286-0 PMid:3366997 DOI: https://doi.org/10.1016/0735-1097(88)90286-0

Dumesnil JG, Yoganathan AP. Valve prosthesis hemodynamics and the problem of high transprosthetic pressure gradients. Eur J Cardiothorac Surg. 1992;6(1):S34-8. https://doi. org/10.1016/1010-7940(92)90019-t PMid:1389276 DOI: https://doi.org/10.1093/ejcts/6.Supplement_1.S34

Tongue AG, Dumesnil JG, Laforest I, Theriault C, Durand LG, Pibarot P. Left ventricular longitudinal shortening in patients with aortic stenosis: Relationship with symptomatic status. J Heart Valve Dis. 2003;12(2):142-9. https://doi.org/10.1016/ s0735-1097(02)81885-x PMid:12701783

Mascherbauer J, Schima H, Maurer G, Baumgartner H. Doppler assessment of mechanical aortic valve prostheses: Effect of valve design and size of the aorta. J Heart Valve Dis. 2004;13(5):823-30. PMid:15473486

Travis BR, Leo HL, Shah PA, Frakes DH, Yoganathan AP. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J Biomech Eng. 2002;124(2):155-65. https://doi.org/10.1115/1.1448519 PMid:12002124 DOI: https://doi.org/10.1115/1.1448519

Stewart SF, Herman BA, Nell DM, Retta SM. Effects of valve characteristics on the accuracy of the Bernoulli equation: A survey of data submitted to the U.S. FDA. J Heart Valve Dis. 2004;13(3):461-6. PMid:15222294

Knebel F, Gliech V, Walde T, Eddicks S, Konertz W, Baumann G, et al. High concordance of invasive and echocardiographic mean pressure gradients in patients with a mechanical aortic valve prosthesis. J Heart Valve Dis. 2005;14(3):332-7. PMid:15974527

Strüber M, Campbell A, Richard G, Laas J. Hydrodynamic function of tilting disc prostheses and bileaflet valves in double valve replacement. Eur J Cardiothorac Surg. 1996;10(6):422-7. https://doi.org/10.1016/s1010-7940(96)80109-6 PMid:8817137 DOI: https://doi.org/10.1016/S1010-7940(96)80109-6

Yoganathan AP, Travis BR. Fluid dynamics of prosthetic valves. In: Otto C, editor. The Practice of Clinical Echocardiography. 2nd ed. Philadelphia, PA: WB Saunders; 2002. p. 50-52434.

Hartrumph M, Albes JM, Krempl T, Rudolph V, Wahlers T. The hemodynamic performance of standard bileaflet valves is impaired by a tilted implantation position. Eur J Cardiothorac Surg. 2003;23(3):283-91. https://doi.org/10.1016/ s1010-7940(02)00804-7 PMid:12614795 DOI: https://doi.org/10.1016/s1010-7940(02)00804-7

Travis BR, Heinrich RS, Ensley AE, Gibson DE, Hashim S, Yoganathan AP. The hemodynamic effects of mechanical prosthetic valve type and orientation on fluid mechanical energy loss and pressure drop in in vitro models of ventricular hypertrophy. J Heart Valve Dis. 1998;7(3):345-54. PMid:9651851

Fisher J. Comparative study of the hydrodynamic function of six size 19 mm bileaflet heart valves. Eur J Cardiothorac Surg. 1995;9(12):692-6. https://doi.org/10.1016/ s1010-7940(05)80127-7 PMid:8703490 DOI: https://doi.org/10.1016/S1010-7940(05)80127-7

Pibarot P, Garcia D, Dumesnil JG. Energy loss index in aortic stenosis: From fluid mechanics concept to clinical application. Circulation. 2013;127(10):1101-4. PMid:23479666 DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.001130

Thourani VH, Keeling WB, Sarin EL, Guyton RA, Kilgo PD, Dara AB, et al. Impact of preoperative renal dysfunction on long-term survival for patients undergoing aortic valve replacement. Ann Thorac Surg. 2011;91(6):1798-806. https:// doi.org/10.1016/j.athoracsur.2011.02.015 PMid:21536247 DOI: https://doi.org/10.1016/j.athoracsur.2011.02.015

Botzenhardt F, Hoffmann E, Kemkes BM, Gansera B. Determinants of ascending aortic dimensions after aortic valve replacement with a stented bioprosthesis. J Heart Valve Dis. 2007;16(1):19-26. PMid:17315379

Bevan GH, Zidar DA, Josephson RA, Al-Kindi SG. Mortality due to aortic stenosis in the United States, 2008-2017. JAMA. 2019;321(22):2236-8. https://doi.org/10.1001/jama.2019.6292 PMid:31184728 DOI: https://doi.org/10.1001/jama.2019.6292

Downloads

Published

2020-11-30

How to Cite

1.
Anguseva T, Mitrev Z, Milojevic P, Zdravkovska M. Evaluation of Prognosis of Aortic Valve Stenosis: A New Approach Based on Transvalvular Energy Loss Index. Open Access Maced J Med Sci [Internet]. 2020 Nov. 30 [cited 2024 Nov. 21];8(B):1136-43. Available from: https://oamjms.eu/index.php/mjms/article/view/5498