Virtual Screening of the Active Components of Garcinia mangostana Linn. Potentially Inhibiting the Interaction of Advanced Glycation End-products and their Receptor

Authors

  • Muhammad Ali Faisal Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; Department of Ophthalmology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, Indonesia
  • Ika Kustiyah Oktaviyanti Department of Pathology Anatomy, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, Indonesia
  • Hidayat Sujuti Department of Biochemistry, Faculty of Medicine, Brawijaya University, Malang, Indonesia
  • Achmad Rudijanto Department of Internal Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.5505

Keywords:

Advanced glycation end-products-receptor for advanced glycation end-products inhibitor, Garcinia mangostana L., in silico, Xanthones

Abstract

BACKGROUND: Mangosteen (Garcinia mangostana L.) is a plant that contains various secondary metabolite compounds, one of which is xanthone. Xanthone in mangosteen has a variety of beneficial biological and medical effects, one of which is an antioxidative, anti-inflammatory, and antiapoptotic agent.

AIM: The aim of the study was to perform the selection of any xanthone in mangosteen pericarp that have potentially inhibit the interaction of AGEs and RAGE.

METHODS: The analysis was made in silico by docking method using software Hex 8.0. The docking was done between AGEs-RAGE, also between nine active compounds of G. mangostana with RAGE. The active compounds analyzed here were including α-mangostin, β-mangostin, γ-mangostin, mangostanol, garcinone D, 1,6-Dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone, gartanin, 1-isomangostin, and 3-isomangostin. Further analysis was performed to see the interactions formed between ligands with their receptors using software LigPlus+ and Discovery Studio 4.1.

RESULTS: 1-isomangostin, 3-isomangostin, γ-mangostin, mangostanol, D-garcinone, and gartanin have potentially could inhibit the interaction and activity of imidazole in RAGE through a competitive binding mechanism.

CONCLUSIONS: The inhibition of imidazole-RAGE activity by the mangosteen active components may inhibit the pathobiology of AGEs-RAGE axis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Akbar IZ, Permatasari N, Soeatmadji DW, Kalim H. Reactive oxygen species and cell morphology of MC3T3E1 preosteoblast cell line exposed to methylgyoxal by laser scanning confocal microscopy. Oxid Antioxid Med Sci. 2013;2(1):65-8. https://doi.org/10.5455/oams.050313.br.006 DOI: https://doi.org/10.5455/oams.050313.br.006

Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16-28. https://doi.org/10.1093/glycob/cwi053 PMid:15764591 DOI: https://doi.org/10.1093/glycob/cwi053

Avery NC, Bailey AJ. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol Biol. 2006;54(7):387-95. https://doi.org/10.1016/j.patbio.2006.07.005 PMid:16962252 DOI: https://doi.org/10.1016/j.patbio.2006.07.005

Yamamoto H, Watanabe T, Yamamoto Y, Yonekura H, Munesue S, Harashima A, et al. RAGE in diabetic nephropathy. Curr Mol Med. 2007;7(8):752-7. https://doi.org/10.2174/156652407783220769 PMid:18331233 DOI: https://doi.org/10.2174/156652407783220769

Guglielmotto M, Aragno M, Tamagno E, Vercellinatto I, Visentin S, Medana C, et al. AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiol Aging. 2012;33(1):13-27. https://doi.org/10.1016/j.neurobiolaging.2010.05.026 PMid:20638753 DOI: https://doi.org/10.1016/j.neurobiolaging.2010.05.026

Sitkiewicz E, Tarnowski K, Poznański J, Kulma M, Dadlez M. Oligomerization interface of RAGE receptor revealed by MS-monitored hydrogen deuterium exchange. PLoS One. 2013;8(10):e76353. https://doi.org/10.1371/journal.pone.0076353 PMid:24098480 DOI: https://doi.org/10.1371/journal.pone.0076353

Win MT, Yamamoto Y, Munesue S, Saito H, Han D, Motoyoshi S, et al. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res. 2012;2012:894605. https://doi.org/10.1155/2012/894605 PMid:22110482 DOI: https://doi.org/10.1155/2012/894605

Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation. Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582- 92. https://doi.org/10.1016/j.cardiores.2004.05.001 PMid:15306213 DOI: https://doi.org/10.1016/j.cardiores.2004.05.001

Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889-97. PMid:8144582 DOI: https://doi.org/10.1016/S0021-9258(17)36966-1

Lander HL, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM. Activation of the receptor for advanced glycation end products triggers a p21ras-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem. 1997;272(28):17810-4. https://doi.org/10.1074/jbc.272.28.17810 PMid:9211935 DOI: https://doi.org/10.1074/jbc.272.28.17810

Owen WF Jr., Hou FF, Stuart RO, Kay J, Boyce J, Chertow GM, et al. β2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts. Kidney Int. 1998;53(5):1365-73. https://doi.org/10.1046/j.1523-1755.1998.00882.x PMid:9573554 DOI: https://doi.org/10.1046/j.1523-1755.1998.00882.x

Park L, Raman KG, Lee KJ, Yan L, Ferran LJ Jr., Chow WS, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end products. Nat Med. 1998;4(9):1025-31. https://doi.org/10.1038/2012 PMid:9734395 DOI: https://doi.org/10.1038/2012

Ovale-Magallanes B, Eugenio-Perez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L): A comprehensive update. Food Chem Toxicol. 2017;109(1):102- 22. https://doi.org/10.1016/j.fct.2017.08.021 PMid:28842267 DOI: https://doi.org/10.1016/j.fct.2017.08.021

Faisal MA, Octavianty IK, Sujuti H, Rudijanto A. Anticataract Activity of Ethanolic Extract of Garcinia Mangostana Linn. Pericarp on Glucose Induced Cataractogenesis in Goat Lens. Open Access Maced J Med Sci. 2020;8:571-7. https://doi.org/10.3889/oamjms.2020.4792 DOI: https://doi.org/10.3889/oamjms.2020.4792

O’Boyle N, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33 PMid:21982300 DOI: https://doi.org/10.1186/1758-2946-3-33

Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195-201. https://doi.org/10.1093/bioinformatics/bti770 PMid:16301204 DOI: https://doi.org/10.1093/bioinformatics/bti770

Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T. The SWISS-MODEL repository and associated resources. Nucleic Acids Res. 2009;37:387-92. https://doi.org/10.1093/nar/gkn750 PMid:18931379 DOI: https://doi.org/10.1093/nar/gkn750

Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW. HexServer: An FFT-based protein docking server powered by graphics processors. Nucl Acids Res. 2010;38:445- 9. https://doi.org/10.1093/nar/gkq311 PMid:20444869 DOI: https://doi.org/10.1093/nar/gkq311

Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778-86. https://doi.org/10.1021/ci200227u PMid:21919503 DOI: https://doi.org/10.1021/ci200227u

Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45(1):160-9. https://doi.org/10.1021/ci049885e PMid:15667141 DOI: https://doi.org/10.1021/ci049885e

Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar- Hernandez MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25(11):2185- 97. https://doi.org/10.1016/j.cellsig.2013.06.013 PMid:23838007 DOI: https://doi.org/10.1016/j.cellsig.2013.06.013

Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem. 2011;83(8):1637-41. https://doi.org/10.1351/pac-rec-10-01-02 DOI: https://doi.org/10.1351/PAC-REC-10-01-02

Xue J, Rai V, Frolov S, Singer D, Chabierski S, Xie J, et al. Advanced glycation end product (AGE) recognition by the receptor for AGEs (RAGE). Structure. 2011;19(5):722-32. https://doi.org/10.1016/j.str.2011.02.013 PMid:21565706 DOI: https://doi.org/10.1016/j.str.2011.02.013

Jandeleit-Dahm K, Watson A, Soro-Paavonen A. The AGE/ RAGE axis in diabetes-accelerated atherosclerosis. Clin Exp Pharmacol Physiol. 2008;35(3):329-34. https://doi.org/10.1111/j.1440-1681.2007.04875.x PMid:18290873 DOI: https://doi.org/10.1111/j.1440-1681.2007.04875.x

Peres V, Nagem TJ, de Oliveira FF. Tetraoxygenated naturally occurring xanthones. Phytochemistry. 2000;55(7):683-710. https://doi.org/10.1016/s0031-9422(00)00303-4 PMid:11190384 DOI: https://doi.org/10.1016/S0031-9422(00)00303-4

Vieira LM, Kijjoa A. Naturally-occurring xanthones: Recent developments. Curr Med Chem. 2005;12(21):2413-46. https://doi.org/10.2174/092986705774370682 PMid:16250871 DOI: https://doi.org/10.2174/092986705774370682

Schmid W. Ueber das mangostin. Liebigs Ann Chem. 1855;93(1):83-9. https://doi.org/10.1002/jlac.18550930105 DOI: https://doi.org/10.1002/jlac.18550930105

Jefferson AQ, Scheimann F, Sim KY. Isolation of γ-mangostin from Garcinia mangostana and preparation of the natural mangostins by selective demethylation. Aust J Chem. 1970;23:2539-43. https://doi.org/10.1071/ch9702539 DOI: https://doi.org/10.1071/CH9702539

Sen AK, Sarkar KK, Majumder PC, Banerji N. Garcinone-D, a new xanthone from Garcinia mangostane Linn. Indian J Chem. 1986;25B:1157-8.

Chairungsrilerd N, Takeuchi K, Ohizumi Y, Nozoe S, Ohta T. Mangostanol, a prenyl xanthone from Garcinia mangostana. Phytochemistry. 1996;43(5):1099-102. https://doi.org/10.1016/ s0031-9422(96)00410-4 DOI: https://doi.org/10.1016/S0031-9422(96)00410-4

Mahabusarakam W, Wiriyachtra P, Taylor W. Chemical constituents of Garcinia mangostana. J Nat Prod. 1987;50(3):474-8. https://doi.org/10.1021/np50051a021 DOI: https://doi.org/10.1021/np50051a021

Asai F, Iinuma M, Tanaka T, Tosa H. A xanthone from pericarps of Garcinia mangostana. Phytochemistry. 1995;39:943-4. https://doi.org/10.1016/0031-9422(95)00042-6 DOI: https://doi.org/10.1016/0031-9422(95)00042-6

Nakatani K, Nakahata N, Arakawa T, Yasuda H, Ohizumi Y. Inhibition of cyclooxygenase and prostaglandin E2 syntesis by c-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem Pharmacol. 2002;63(1):73-9. https://doi.org/10.1016/s0006-2952(01)00810-3 PMid:11754876 DOI: https://doi.org/10.1016/S0006-2952(01)00810-3

Shalini K, Sharma PK, Kumar N. Imidazole and its biological activities: A review. Chem Sin. 2010;1(3):36-47. Available from: https://www.imedpub.com/articles/imidazole-and-its-biological-activities-a-review.pdf.

Downloads

Published

2020-11-21

How to Cite

1.
Faisal MA, Oktaviyanti IK, Sujuti H, Rudijanto A. Virtual Screening of the Active Components of Garcinia mangostana Linn. Potentially Inhibiting the Interaction of Advanced Glycation End-products and their Receptor. Open Access Maced J Med Sci [Internet]. 2020 Nov. 21 [cited 2024 Nov. 22];8(A):921-7. Available from: https://oamjms.eu/index.php/mjms/article/view/5505