Evaluating the Natrium Iodide Symporter Expressions in Thyroid Tumors

Authors

  • Aisyah Elliyanti Department of Medical Physics, Faculty of Medicine, Universitas Andalas, Padang, Indonesia; Division of Nuclear Medicine, Department of Radiology, Dr. M. Djamil Hospital, Padang, Indonesia
  • Rony Rustam Department of Surgery, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
  • Tofrizal Tofrizal Department of Pathology Anatomy, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
  • Yenita Yenita Department of Pathology Anatomy, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
  • Yayi D. Billianti Susanto Department of Pathology Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.5534

Keywords:

Follicular thyroid cancer, Immunohistochemistry, Membrane staining, Papillary thyroid cancer, Western blot

Abstract

BACKGROUND: Decreased Natrium iodide symporter (NIS) expression levels or diminished NIS targeting thyroid cancer cells’ plasma membrane leads to radioiodine-refractory disease.

AIM: The aim of this study was to analyze the NIS expression in thyroid tumors.

MATERIALS AND METHODS: The samples were thyroid tissues of patients who underwent surgery for a thyroid tumor. The tissues were processed for NIS protein expressions by immunohistochemistry (IHC) and Western blot (WB). Graves’ disease samples were used as positive controls. The samples were incubated without the primary antibody, and they were used as negative controls for IHC examination. Na+/K+ ATPase was a plasma membrane protein marker in the WB procedure.

RESULTS: Twenty-nine samples were assessed for NIS protein. All of them showed the expression in the cytoplasm with intensity 1+ to 3+ with Allred score 3-8. Fourteen out of 29 cases (48.2%) showed NIS cytoplasm staining intensity ≥2+ consist of 10 papillary thyroid cancer (PTC), three follicular thyroid cancer, and one adenoma. Membrane staining was found in 2 samples of PTC (6.9%). Six samples (adenoma 1 sample, PTC 5 samples) showed NIS expression at membrane very weak (1+); they were considered as negative. NIS protein has several bands of ~ 80 kDa, ~ 62 kDa, and ~ 49 kDa.

CONCLUSION: NIS expression in thyroid cancer mostly expresses in the cytoplasm instead of the membrane. NIS will play a functional role in the membrane to bring iodine across the membrane against the concentration. It can be the main reason for the lack of response of radioiodine in some differentiated thyroid cancers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Soheylizad M, Khazaei S, Jenabi E, Delpisheh A, Veisani Y. The relationship between human development index and its components with thyroid cancer incidence and mortality: Using the decomposition approach. Int J Endocrinol Metab. 2018;16(4):e65078. PMid:30464773

La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: A global overview. Int J Cancer. 2015;136(9):2187-95. PMid:25284703 3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29. PMid:25559415

Yu F, Ma J, Huo K, Li P. Association between breast cancer and thyroid cancer: A descriptive study. Transl Cancer Res. 2017;6:393-40.

Roman BR, Morris LG, Davies L. The thyroid cancer epidemic, 2017 perspective. Curr Opinion Endocrinol Diabetes Obes. 2017;24:332-6.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. PMid:30207593

Olson E, Wintheiser G, Wolfe KM, Droessler J, Silberstein PT. Epidemiology of thyroid cancer: A review of the national cancer database, 2000-2013. Cureus. 2019;11:e4127. PMid:31049276

Tumino D, Frasca F, Newbold K. Updates on the management of advanced, metastatic, and radioiodine refractory differentiated thyroid cancer. Front Endocrinol (Lausanne). 2017;8:312. PMid:29209273

Dohan O, De La Vieja, Paroder V, Riedel C, Artini M, Reed M, et al. The sodium/iodide symporter (NIS): Characterization, regulation and medical significance. Endocr Rev. 2003;24(1):48-77. PMid:12588808

Haymart MR, Banerjee M, Stewart AK, Koenig RJ, Birkmeyer JD, Griggs JJ. Use of radioactive iodine for thyroid cancer. JAMA. 2011;306(7):721-8. PMid:21846853

Lakshmanan A, Scarberry D, Shen DH, Jhiang SM. Modulation of sodium iodide symporter in thyroid cancer. Horm Cancer. 2014;5(6):363-73. PMid:25234361

Bonnema SJ, Hegedüs L. Radioiodine therapy in benign thyroid diseases: Effects, side effects, and factors affecting therapeutic outcome. Endocr Rev 2012;33:920-80. PMid:22961916

Wyszomirska A. Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev Cent East Eur. 2012;15(2):120-3. PMid:22936505

Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, et al. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets. 2010;10(2):242-67. PMid:20201784

Choi YW, Kim HJ, Kim YH, Kim YH, Park SH, Chwae YJ, Lee J, et al. B-RafV600E inhibits sodium iodide symporter expression via regulation of DNA methyltransferase 1. Exp Mol Med. 2014;46(11):e120.

Slonimsky E, Tulchinsky M. Radiotheragnostics paradigm for radioactive iodine (Iodide) management of differentiated thyroid cancer. Curr Pharm. 2020;26(31):3812-27. PMid:32503402

Faria M, Domingues R, Paixão F, Bugalho MJ, Matos P, et al. TNFα-mediated activation of NF-κB downregulates sodiumiodide symporter expression in thyroid cells. PLoS One. 2020;15:e0228794. PMid:32049985

Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer. 2206;13:797-826. PMid:16954431

Smith VE, Read ML, Turnell AS, Watkins RJ, Watkinson JC, Lewy GD, et al. A novel mechanism of sodium iodide symporter repression in differentiated thyroid cancer. J Cell Sci. 2009;122(Pt 18):3393-402. PMid:19706688

Ahad F, Ganie SA. Iodine, Iodine metabolism and iodine deficiency disorders revisited. Indian J Endocrinol Metab. 2010;14:13-7. PMid:21448409

Elliyanti A, Rusnita D, Afriani N, Susanto YD, Susilo VY, Setiyowati S, et al. Analysis natrium iodide symporter expression in breast cancer subtypes for radioiodine therapy response. Nucl Med Mol Imaging. 2020;54(1):35-42. PMid:32206129

Darrouzet E, Lindenthal S, Marcellin D, Pellequer JL, Pourcher T. The sodium/iodide symporter: State of art of its molecular characterization. Biochim Biophys Acta. 2014;1838(Pt 1):244-53. PMid:23988430

Fan YX, Liang ZX, Liu QZ, Xiao H, Li KB, Wu JZ. Cell penetrating peptide of sodium-iodide symporter effect on the I-131 radiotherapy on thyroid cancer. Exp Ther Med. 2017;13(3):989-94. PMid:28450931

Son SH, rakash Gangadaran P, Ahn BC. A novel strategy of transferring NIS protein to cells using extracellular vesicles leads to increase in iodine uptake and cytotoxicity. Int J Nanomed. 2019;14:1779-87. PMid:30880979

Kakudo K, Bychkov A, Baii Y, Li Y, Liu Z, Jung CK. The new 4th edition world health organization classification for thyroid tumors, Asian perspectives. Pathol Int. 2018;68(12):641-64. PMid:30537125

Wolff AC. Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J Clin Oncol 2013;31(31):3397-4013. PMid:24101045

Elledge RM, Green S, Pugh R, Allre DG, Clark GM, Hill J, et al. Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: A Southwest oncology group study. Int J Cancer. 2000;89(2):111-7. PMid:10754487

Castro MR, Bergert ER, Beito TG, Roche PC, Ziesmer SC, Jhiang SM, et al. Monoclonal antibodies against the human sodium iodide symporter: Utility for immunocytochemistry of thyroid cancer. J Endocrinol. 1999;163(3):495-504. PMid:10588823

Peyrottes I, Navarro V, Ondo-Mendez A, Marcellin D, Bellanger L, Marsault R, et al. Immunoanalysis indicates that the sodium iodide symporter is not overexpressed in intracellular compartments in thyroid and breast cancers. Eur J Endocrinol. 2009;160(2):215-25. PMid:19029227

Castro MR, Bergert ER, Goellner JR, Hay ID, Morris JC. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: Correlation with radioiodine uptake. J Clin Endocrinol Metab. 2001;86(11):5627-32. PMid:11701745

Tavares C, Coelho MJ, Eloy C, Melo M, da Rocha AG, Pestana A, et al. NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocr Connect. 2018;7(1):78-90. PMid:29298843

Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M, et al. Na+/I- symporter distribution in human thyroid tissues: An immunohistochemical study. J Clin Endocrinol Metab. 1998;83(11):4102-6. PMid:9814499

Lazar V, Bidart JM, Caillou B, Mahé C, Lacroix L, Filetti S, et al. Expression of the Na+/I- symporter gene in human thyroid tumors: A comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999;84(9):3228-34. PMid:10487692

D’Agostino M, Sponziello M, Puppin C, Celano M, Maggisano V, Baldan F, et al. Different expression of TSH receptor and NIS genes in thyroid cancer: Role of epigenetics. J Mol Endocrinol 2014;52(2):121-31. PMid:24353283

Liu J, Liu Y, Lin Y, Liang J. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy. Endocrinol Metab. 2019;34(3):215-25. PMid:31565873

De La Vieja A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: Impact on thyroid and extrathyroid pathophysiology. Physiol Rev. 2000;80(3):1083-105. PMid:10893432

Jhiang SM, Cho JY, Ryu KY, De Young BR, Smanik PA, McGaughy VR, et al. An immunohistochemical study of Na+ /Isymporter in human thyroid tissues and salivary gland tissues. Endocrinology. 1998;139(10):4416-9. PMid:9751526

Liu Z, Xing M. Induction of sodium/iodide symporter (NIS) expression and radioiodine uptake in non-thyroid cancer cells. PLoS One. 2012;7(2):e31729. PMid:22359623

De Morais RM, Sobrinho AB, de Souza Silva CM, de Oliveira JR, da Silva IC, de Toledo Nóbrega O. The role of the NIS (SLC5A5) gene in papillary thyroid cancer: A systematic review. Int J Endocr. 2018;2018:9128754. PMid:30595693

Elliyanti A, Susilo VY, Setiyowati S, Ramli M, Masjhur JS, Achmad TH. Uptake and cytotoxicity characterization of radioiodine in MCF-7 and SKBR3 breast cancer cell lines. Atom Indones. 2016;42(3):145-9.

Elliyanti A, Putra AE, Sribudiani Y, Noormartany N, Masjhur JS, Achmad TH, et al. Epidermal growth factor and adenosine triphosphate induce natrium iodide symporter expression in breast cancer cell lines. Open Access Maced J Med Sci. 2019;7(13):2088-92. PMid:31456831

Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:1-9. PMid:25988165

Morari EC, Marcello MA, Guilhen AC, Cunha LL, Latuff P, Soares FA, et al. Use of sodium iodide symporter expression in differentiated thyroid carcinomas. Clin Endocrinol. 2011;75(2):247-54. PMid:21521301

Downloads

Published

2021-01-05

How to Cite

1.
Elliyanti A, Rustam R, Tofrizal T, Yenita Y, Susanto YDB. Evaluating the Natrium Iodide Symporter Expressions in Thyroid Tumors. Open Access Maced J Med Sci [Internet]. 2021 Jan. 5 [cited 2024 Apr. 19];9(B):18-23. Available from: https://oamjms.eu/index.php/mjms/article/view/5534

Most read articles by the same author(s)