Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio Correlations with C-reactive Protein and Erythrocyte Sedimentation Rate in Traumatic Brain Injury

Authors

  • Gede Febby Pratama Kusuma Master Postgraduate Program, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
  • Sri Maliawan Department of Neurosurgery, Sanglah General Hospital, Denpasar, Bali, Indonesia
  • Tjokorda Gde Bagus Mahadewa Department of Neurosurgery, Sanglah General Hospital, Denpasar, Bali, Indonesia
  • Tjokorda Gde Agung Senapathi Department of Anesthesiology and Intensive Care, Sanglah General Hospital, Denpasar, Bali, Indonesia
  • Anak Agung Wiradewi Lestari Department of Clinical Pathology, Sanglah General Hospital, Denpasar, Bali, Indonesia
  • I Made Muliarta Department of Physiology, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.5544

Keywords:

Traumatic brain injury, Secondary brain injury, Neutrophil-to-lymphocyte-ratio, Platelet-to-lymphocyte-ratio, C-reactive-protein, Erythrocyte-sedimentation-rate

Abstract

BACKGROUND: Immune system and inflammatory response play an essential role in the development of secondary brain injury (SBI) after traumatic brain injury (TBI). An inflammatory biomarker that can reflect the SBI severity is needed to increase the effectivity of TBI management and prevent morbidity and mortality post-TBI. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), which are more affordable than C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), theoretically have the potential to be used as a marker of the SBI severity. However, NLR and PLR in daily medical practice are not yet fully utilized.

AIM: The aim of the study was to correlate NLR and PLR with CRP and ESR as a marker of SBI severity post-TBI.

METHODS: This cross-sectional study was conducted at Sanglah Hospital Denpasar from January to April 2020. Patients diagnosed with TBI were included in this study by consecutive sampling. The blood samples were taken at 24-h post-TBI to obtain the NLR, PLR, CRP, and ESR results. Spearman’s correlation test was conducted to determine the correlation between NLR and PLR with CRP and ESR.

RESULTS: Eighty-five patients were included in data analysis. Median ± (interquartile range) of the NLR, PLR, CRP, and ESR were 7.60 ± (6.83), 145.58 ± (76.95), 60.83 ± (66.3), and 12.50 ± (13.85) consecutively. NLR and PLR had a significant positive correlation with CRP (r = 0.472, **p < 0.01; r = 0.283, **p < 0.01 consecutively). But, NLR and PLR were not correlated with ESR.

CONCLUSION: NLR and PLR can become a useful and more affordable marker for reflecting the SBI severity in acute TBI.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 2013;9(4):231-6. https://doi.org/10.1038/nrneurol.2013.22 PMid:23443846 DOI: https://doi.org/10.1038/nrneurol.2013.22

Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007;99(1):4-9. https://doi.org/10.1093/bja/aem131 PMid:17573392 DOI: https://doi.org/10.1093/bja/aem131

Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths-United States, 2007 and 2013. MMWR Surveill Summ 2017;66(9):1-16. https://doi.org/10.15585/mmwr.ss6609a1 PMid:28301451 DOI: https://doi.org/10.15585/mmwr.ss6609a1

Williams OH, Tallantyre EC, Robertson NP. Traumatic brain injury: Pathophysiology, clinical outcome and treatment. J Neurol 2015;262(5):1394-6. https://doi.org/10.1007/s00415-015-7741-4 PMid:25904204 DOI: https://doi.org/10.1007/s00415-015-7741-4

Werner JK, Stevens RD. Traumatic brain injury: Recent advances in plasticity and regeneration. Curr Opin Neurol 2015;28(6):565-73. https://doi.org/10.1097/wco.0000000000000265 PMid:26544030 DOI: https://doi.org/10.1097/WCO.0000000000000265

Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): Friend or foe? J Neuroinflammation 2018;15(1):146. https://doi.org/10.1186/s12974-018-1173-x PMid:29776443 DOI: https://doi.org/10.1186/s12974-018-1173-x

Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 2005;22(8):885-95. https://doi.org/10.1089/neu.2005.22.885 PMid:16083355 DOI: https://doi.org/10.1089/neu.2005.22.885

Johnson EA, Dao TL, Guignet MA, Geddes CE, Koemeter-Cox AI, Kan RK. Increased expression of the chemokines CXCL1 and MIP-1alpha by resident brain cells precedes neutrophil infiltration in the brain following prolonged soman-induced status epilepticus in rats. J Neuroinflammation 2011;8:41. https://doi.org/10.1186/1742-2094-8-41 PMid:21535896 DOI: https://doi.org/10.1186/1742-2094-8-41

Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2016;275 Pt 3:316-27. https://doi.org/10.1016/j.expneurol.2015.08.018 PMid:26342753 DOI: https://doi.org/10.1016/j.expneurol.2015.08.018

Chen SC, Leach MW, Chen Y, Cai XY, Sullivan L, Wiekowski M, et al. Central nervous system inflammation and neurological disease in transgenic mice expressing the CC chemokine CCL21 in oligodendrocytes. J Immunol 2002;168(3):1009-17. https://doi.org/10.4049/jimmunol.168.3.1009 PMid:11801633 DOI: https://doi.org/10.4049/jimmunol.168.3.1009

Kalish H, Phillips TM. Application of immunoaffinity capillary electrophoresis to the measurements of secreted cytokines by cultured astrocytes. J Sep Sci 2009;32(10):1605-12. https://doi.org/10.1002/jssc.200900047 PMid:19472286 DOI: https://doi.org/10.1002/jssc.200900047

Pineau I, Sun L, Bastien D, Lacroix S. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 2010;24(4):540-53. https://doi.org/10.1016/j.bbi.2009.11.007 PMid:19932745 DOI: https://doi.org/10.1016/j.bbi.2009.11.007

Fang J, Han D, Hong J, Tan Q, Tian Y. The chemokine, macrophage inflammatory protein-2gamma, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation 2012;9:267. https://doi.org/10.1186/1742-2094-9-267 PMid:23234294 DOI: https://doi.org/10.1186/1742-2094-9-267

Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2016;144:103-20. https://doi.org/10.1016/j.pneurobio.2015.09.008 PMid:26455456 DOI: https://doi.org/10.1016/j.pneurobio.2015.09.008

Murthy T, Bhatia P, Sandhu K, Prabhakar T, Gogna RL. Secondary brain injury: Prevention and intensive care management. Indian J Neurotrauma 2005;2(1):7-12. https://doi.org/10.1016/s0973-0508(05)80004-8 DOI: https://doi.org/10.1016/S0973-0508(05)80004-8

Moppett IK. Traumatic brain injury: Assessment, resuscitation and early management. Br J Anaesth 2007;99(1):18-31. https://doi.org/10.1093/bja/aem128 PMid:17545555 DOI: https://doi.org/10.1093/bja/aem128

Walsh KB, Sekar P, Langefeld CD, Moomaw CJ, Elkind MS, Boehme AK, et al. Monocyte count and 30-day case fatality in intracerebral hemorrhage. Stroke 2015;46(8):2302-4. https://doi.org/10.1161/strokeaha.115.009880 PMid:26130090 DOI: https://doi.org/10.1161/STROKEAHA.115.009880

Pan L, Du J, Li T, Liao H. Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio associated with disease activity in patients with Takayasu’s arteritis: A case-control study. BMJ Open 2017;7(4):e014451. https://doi.org/10.1136/bmjopen-2016-014451 PMid:28473512 DOI: https://doi.org/10.1136/bmjopen-2016-014451

Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis 2003;12(3):152-9. https://doi.org/10.1016/s1052-3057(03)00036-3 PMid:17903920 DOI: https://doi.org/10.1016/S1052-3057(03)00036-3

Ye Z, Ai X, Fang F, Hu X, Faramand A, You C. The use of neutrophil to lymphocyte ratio as a predictor for clinical outcomes in spontaneous intracerebral hemorrhage. Oncotarget 2017;8(52):90380-9. https://doi.org/10.18632/oncotarget.20120 PMid:29163837 DOI: https://doi.org/10.18632/oncotarget.20120

Wang F, Wang L, Jiang TT, Xia JJ, Xu F, Shen LJ, et al. Neutrophil-to-lymphocyte ratio is an independent predictor of 30-day mortality of intracerebral hemorrhage patients: A validation cohort study. Neurotox Res 2018;34(3):347-52. https://doi.org/10.1007/s12640-018-9890-6 PMid:29594812 DOI: https://doi.org/10.1007/s12640-018-9890-6

Zhang W, Shen Y. Platelet-to-lymphocyte ratio as a new predictive index of neurological outcomes in patients with acute intracranial hemorrhage: A retrospective study. Med Sci Monit 2018;24:4413-20. https://doi.org/10.12659/msm.910845 PMid:29946059 DOI: https://doi.org/10.12659/MSM.910845

Akboga MK, Canpolat U, Yayla C, Ozcan F, Ozeke O, Topaloglu S, et al. Association of platelet to lymphocyte ratio with inflammation and severity of coronary atherosclerosis in patients with stable coronary artery disease. Angiology 2016;67(1):89-95. https://doi.org/10.1177/0003319715583186 PMid:25922197 DOI: https://doi.org/10.1177/0003319715583186

Azab B, Shah N, Akerman M, McGinn JT Jr., Value of platelet/ lymphocyte ratio as a predictor of all-cause mortality after non- ST-elevation myocardial infarction. J Thromb Thrombolysis 2012;34(3):326-34. https://doi.org/10.1007/s11239-012-0718-6 PMid:22466812 DOI: https://doi.org/10.1007/s11239-012-0718-6

Balta S, Demirkol S, Kucuk U. The platelet lymphocyte ratio may be useful inflammatory indicator in clinical practice. Hemodial Int 2013;17(4):668-9. https://doi.org/10.1111/hdi.12058 PMid:23763539 DOI: https://doi.org/10.1111/hdi.12058

Demirkol S, Balta S, Unlu M, Arslan Z, Cakar M, Kucuk U, et al. Neutrophils/lymphocytes ratio in patients with cardiac syndrome X and its association with carotid intima-media thickness. Clin Appl Thromb Hemost 2014;20(3):250-5. https://doi.org/10.1177/1076029612467227 PMid:23188887 DOI: https://doi.org/10.1177/1076029612467227

Uslu AU, Kucuk A, Sahin A, Ugan Y, Yilmaz R, Gungor T, et al. Two new inflammatory markers associated with disease activity score-28 in patients with rheumatoid arthritis: Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio. Int J Rheum Dis. 2015;18(7):731-5. https://doi.org/10.1111/1756-185x.12582 PMid:25900081 DOI: https://doi.org/10.1111/1756-185X.12582

Zhao JL, Du ZY, Yuan Q, Yu J, Sun YR, Wu X, et al. Prognostic value of neutrophil-to-lymphocyte ratio in predicting the 6-month outcome of patients with traumatic brain injury: A retrospective study. World Neurosurg 2019;124:e411-6 https://doi.org/10.1016/j.wneu.2018.12.107 PMid:30610986 DOI: https://doi.org/10.1016/j.wneu.2018.12.107

Chen J, Qu X, Li Z, Zhang D, Hou L. Peak neutrophil-to-lymphocyte ratio correlates with clinical outcomes in patients with severe traumatic brain injury. Neurocrit Care 2019;30(2):334-9. https://doi.org/10.1007/s12028-018-0622-9 PMid:30288677 DOI: https://doi.org/10.1007/s12028-018-0622-9

Chen W, Yang J, Li B, Peng G, Li T, Li L, et al. Neutrophil to lymphocyte ratio as a novel predictor of outcome in patients with severe traumatic brain injury. J Head Trauma Rehabil 2018;33(1):E53-9. https://doi.org/10.1097/htr.0000000000000320 PMid:28520670 DOI: https://doi.org/10.1097/HTR.0000000000000320

Cho SY, Jeon YL, Kim W, Kim WS, Lee HJ, Lee WI, et al. Mean platelet volume and mean platelet volume/platelet count ratio in infective endocarditis. Platelets 2014;25(8):559-61. https://doi.org/10.3109/09537104.2013.857394 PMid:24205785 DOI: https://doi.org/10.3109/09537104.2013.857394

Kim CH, Kim SJ, Lee MJ, Kwon YE, Kim YL, Park KS, et al. An increase in mean platelet volume from baseline is associated with mortality in patients with severe sepsis or septic shock. PLoS One 2015;10(3):e0119437. https://doi.org/10.1371/journal.pone.0119437 PMid:25742300 DOI: https://doi.org/10.1371/journal.pone.0119437

Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015;6:98. https://doi.org/10.3389/fimmu.2015.00098 PMid:25798138 DOI: https://doi.org/10.3389/fimmu.2015.00098

Mauritz W, Wilbacher I, Majdan M, Leitgeb J, Janciak I, Brazinova A, et al. Epidemiology, treatment and outcome of patients after severe traumatic brain injury in European regions with different economic status. Eur J Public Health 2008;18(6):575-80. https://doi.org/10.1093/eurpub/ckn079 PMid:18794186 DOI: https://doi.org/10.1093/eurpub/ckn079

Kamal VK, Agrawal D, Pandey RM. Epidemiology, clinical characteristics and outcomes of traumatic brain injury: Evidences from integrated level 1 trauma center in India. J Neurosci Rural Pract 2016;7(4):515-25. https://doi.org/10.4103/0976-3147.188637 PMid:27695230 DOI: https://doi.org/10.4103/0976-3147.188637

Rosyidi RM, Priyanto B, Laraswati NK, Islam AA, Hatta M, Bukhari A, et al. Characteristics and clinical outcome of traumatic brain injury in Lombok, Indonesia. Interdiscip Neurosurg 2019;18:100470. https://doi.org/10.1016/j.inat.2019.04.015 DOI: https://doi.org/10.1016/j.inat.2019.04.015

Siwicka-Gieroba D, Malodobry K, Biernawska J, Robba C, Bohatyrewicz R, Rola R, et al. The neutrophil/lymphocyte count ratio predicts mortality in severe traumatic brain injury patients. J Clin Med 2019;8(9):1453. https://doi.org/10.3390/jcm8091453 PMid:31547411 DOI: https://doi.org/10.3390/jcm8091453

Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, et al. Surveillance for traumatic brain injury-related deaths-United States, 1997-2007. MMWR Surveill Summ 2011;60(5):1-32. PMid:21544045

Khajah M, Millen B, Cara DC, Waterhouse C, McCafferty DM. Granulocyte-macrophage colony-stimulating factor (GM-CSF): A chemoattractive agent for murine leukocytes in vivo. J Leukoc Biol 2011;89(6):945-53. https://doi.org/10.1189/jlb.0809546 PMid:21393420 DOI: https://doi.org/10.1189/jlb.0809546

da Silva FM, Massart-Leen AM, Burvenich C. Development and maturation of neutrophils. Vet Q 1994;16(4):220-5. https://doi.org/10.1080/01652176.1994.9694452 PMid:7740747 DOI: https://doi.org/10.1080/01652176.1994.9694452

Beyrau M, Bodkin JV, Nourshargh S. Neutrophil heterogeneity in health and disease: A revitalized avenue in inflammation and immunity. Open Biol 2012;2(11):120134. https://doi.org/10.1098/rsob.120134 PMid:23226600 DOI: https://doi.org/10.1098/rsob.120134

Miao Y. Changes in T lymphocyte subsets after severe traumatic brain injury. Neural Regen Res 2007;2(2):126-8. https://doi.org/10.1016/s1673-5374(07)60028 DOI: https://doi.org/10.1016/S1673-5374(07)60028-0

Mrakovcic-Sutic I, Tokmadzic VS, Laskarin G, Mahmutefendic H, Lucin P, Zupan Z, et al. Early changes in frequency of peripheral blood lymphocyte subpopulations in severe traumatic brain-injured patients. Scand J Immunol 2010;72(1):57-65. https://doi.org/10.1111/j.1365-3083.2010.02407.x PMid:20591077 DOI: https://doi.org/10.1111/j.1365-3083.2010.02407.x

Thomson SP, McMahon LJ, Nugent CA. Endogenous cortisol: A regulator of the number of lymphocytes in peripheral blood. Clin Immunol Immunopathol 1980;17(4):506-14. https://doi.org/10.1016/0090-1229(80)90146-4 DOI: https://doi.org/10.1016/0090-1229(80)90146-4

Silverthorn DU. Human Physiology: An Integrated Approach. 7th ed. Austin: Pearson; 2016.

Zouridakis EG, Garcia-Moll X, Kaski JC. Usefulness of the blood lymphocyte count in predicting recurrent instability and death in patients with unstable angina pectoris. Am J Cardiol 2000;86(4):449-51. https://doi.org/10.1016/s0002-9149(00)00963-2 DOI: https://doi.org/10.1016/S0002-9149(00)00963-2

Nekludov M. Abnormal Coagulation and Platelet Function in Severe Traumatic Brain Injury. Stockholm: Karolinska Institutet; 2016.

Lindblad C, Thelin EP, Nekludov M, Frostell A, Nelson DW, Svensson M, et al. Assessment of platelet function in traumatic brain injury-A retrospective observational study in the neuro-critical care setting. Front Neurol 2018;9:15. https://doi.org/10.3389/fneur.2018.00015 PMid:29434566 DOI: https://doi.org/10.3389/fneur.2018.00015

Keimowitz RM, Annis BL. Disseminated intravascular coagulation associated with massive brain injury. J Neurosurg 1973;39(2):178-80. https://doi.org/10.3171/jns.1973.39.2.0178 PMid:4719695 DOI: https://doi.org/10.3171/jns.1973.39.2.0178

Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care 2004;1(4):479-88. https://doi.org/10.1385/ncc:1:4:479 DOI: https://doi.org/10.1385/NCC:1:4:479

Sogut O, Guloglu C, Orak M, Sayhan MB, Gokdemir MT, Ustundag M, et al. Trauma scores and neuron-specific enolase, cytokine and C-reactive protein levels as predictors of mortality in patients with blunt head trauma. J Int Med Res 2010;38(5):1708-20. https://doi.org/10.1177/147323001003800516 PMid:21309485 DOI: https://doi.org/10.1177/147323001003800516

Bomba GI, Maliawan S, Mahadewa TG. High serum c-reactive protein as predictor of systemic inflamatory respones syndrome in severe head injury patients. Bali Med J 2013;2(1):38-41.

Ekiye A, Sylvester IE, Pius I. High sensitivity c-reactive protein in patients with acute injuries. IOSR J Dent Med Sci 2015;14(6):94-8.

Naghibi T, Mohajeri M, Dobakhti F. Inflammation and outcome in traumatic brain injury: Does gender effect on survival and prognosis? J Clin Diagn Res 2017;11(2):PC06-9. https://doi.org/10.7860/jcdr/2017/19132.9198 PMid:28384927 DOI: https://doi.org/10.7860/JCDR/2017/19132.9198

Shetty T, Cogsil T, Dalal A, Kim E, Halvorsen K, Cummings K, et al. High-sensitivity C-reactive protein: Retrospective study of potential blood biomarker of inflammation in acute mild traumatic brain injury. J Head Trauma Rehabil 2019;34(3):E28-36. https://doi.org/10.1097/htr.0000000000000450 PMid:30499931 DOI: https://doi.org/10.1097/HTR.0000000000000450

Markanday A. Acute phase reactants in infections: Evidence-based review and a guide for clinicians. Open Forum Infect Dis 2015;2(3):ofv098. https://doi.org/10.1093/ofid/ofv098 PMid:26258155 DOI: https://doi.org/10.1093/ofid/ofv098

Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ 2016;115(6):317-21. PMid:29094869

Mackay GM, Forrest CM, Stoy N, Christofides J, Egerton M, Stone TW, et al. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur J Neurol 2006;13(1):30-42. https://doi.org/10.1111/j.1468-1331.2006.01220.x PMid:16420391 DOI: https://doi.org/10.1111/j.1468-1331.2006.01220.x

Rifai N, Ridker PM. High-sensitivity C-reactive protein: A novel and promising marker of coronary heart disease. Clin Chem 2001;47(3):403-11. PMid:11238289 DOI: https://doi.org/10.1093/clinchem/47.3.403

Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: A link between thrombosis and inflammation? Curr Pharm Des 2011;17(1):47-58. https://doi.org/10.2174/138161211795049804 PMid:21247392 DOI: https://doi.org/10.2174/138161211795049804

Liao Y, Liu P, Guo F, Zhang ZY, Zhang Z. Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One 2013;8(7):e68963. https://doi.org/10.1371/journal.pone.0068963 PMid:23894384 DOI: https://doi.org/10.1371/journal.pone.0068963

Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of inflammation and cell death after brain injury. Nature 2014;505(7482):223-8. https://doi.org/10.1038/nature12808 PMid:24317693 DOI: https://doi.org/10.1038/nature12808

Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: From mechanisms to clinical translation. Prog Neurobiol 2014;115:25-44. https://doi.org/10.1016/j.pneurobio.2013.11.003 PMid:24291544 DOI: https://doi.org/10.1016/j.pneurobio.2013.11.003

Kusuma GF, Maliawan S, Mahadewa TG, Senapathi TG. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as an inflammatory biomarker in predicting the severity of secondary brain injury: A review article. Open Access Maced J Med Sci 2020;8(F):1-11. DOI: https://doi.org/10.3889/oamjms.2020.4789

Litao MK, Kamat D. Erythrocyte sedimentation rate and C-reactive protein: How best to use them in clinical practice. Pediatr Ann 2014;43(10):417-20. https://doi.org/10.3928/00904481-20140924-10 PMid:25290132 DOI: https://doi.org/10.3928/00904481-20140924-10

Harrison M. Erythrocyte sedimentation rate and C-reactive protein. Aust Prescr 2015;38(3):93-4. https://doi.org/10.18773/austprescr.2015.034 PMid:266486291192 DOI: https://doi.org/10.18773/austprescr.2015.034

Downloads

Published

2020-11-21

How to Cite

1.
Kusuma GFP, Maliawan S, Mahadewa TGB, Senapathi TGA, Lestari AAW, Muliarta IM. Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio Correlations with C-reactive Protein and Erythrocyte Sedimentation Rate in Traumatic Brain Injury. Open Access Maced J Med Sci [Internet]. 2020 Nov. 21 [cited 2024 Nov. 21];8(B):1185-92. Available from: https://oamjms.eu/index.php/mjms/article/view/5544