Mite Sarcoptes scabiei Varieties Hominis in South Sumatra: Specific Identification and Comparative Study

Authors

  • Yessi Arisandi Doctoral Programme, Department of Environmental Science, Universitas Sriwijaya, Palembang, Indonesia; Department of Nursing Science, Siti Khadijah Institute of Health Sciences, Palembang Indonesia
  • Chairil Anwar Department of Parasitology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
  • Salni Salni Department of Biology, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Palembang, Indonesia
  • Dadang Hikmah Purnama Department of Sociology, Faculty of Social and Political Science, Universitas Sriwijaya, Palembang, Indonesia
  • Novrikasari Novrikasari Department of Occupational Safety and Health, Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
  • Ahmad Ghiffari Department of Parasitology, Faculty of Medicine, Universitas Muhammadiyah Palembang, Palembang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.5562

Keywords:

Sarcoptes scabiei, scabies, phylogeny, Indonesia, DNA primers

Abstract

BACKGROUND: Sarcoptes scabiei mites have more than 15 genetically diverse varieties from various hosts. Identification of S. scabiei mite varieties hominis as an intervention in its prevention is still rarely done.

AIM: This study aimed to observe the genetic relationship of the mite S. scabiei varieties hominis compare to the parasite S. scabiei varieties hominis in other regions.

METHODS: This research used polymerase chain reaction (PCR) and sequencing methods with 16S gene-specific primers. From 32 S. scabiei samples, 22 samples were identified as varieties hominis that was marked by the appearance of the band at 132 bp.

RESULTS: S. scabiei mites hominis varieties from South Sumatra (Yessi Scabies A2 and Yessi Scabies B3) have similarities with deoxyribonucleic acid (DNA) strands with S. scabiei hominis varieties from China (KJ781377 and KJ781376). In contrast, Yessi Scabies A1 has similarities with DNA strands with mite S. scabiei varieties hominis from Australia (AY493402). Still, all the DNA strands, this research is different from S. scabiei mites DNA strands hominis from Panama and Pakistan.

CONCLUSION: The PCR method is advantageous and specific in identifying mites S. scabiei hominis varieties, the cause of scabies in humans.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Morgan MS, Rider SD, Arlian LG. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory. PLoS Negl Trop Dis. 2017;11(6):e0005669. https://doi.org/10.1371/journal.pntd.0005669 PMid:28604804 DOI: https://doi.org/10.1371/journal.pntd.0005669

Walton SF, Currie BJ. Problems in diagnosing scabies, a global disease in human and animal populations. Clin Microbiol Rev. 2007;20(2):268-79. https://doi.org/10.1128/cmr.00042-06 PMid:17428886 DOI: https://doi.org/10.1128/CMR.00042-06

Erster O, Roth A, Pozzi S, Bouznach A, Shkap V. First detection of Sarcoptes scabiei from the domesticated pig (Sus scrofa) and genetic characterization of S. scabiei from pet, farm and wild hosts in Israel. Exp Appl Acarol. 2015;66(4):605-12. https://doi.org/10.1007/s10493-015-9926-z PMid:26002310 DOI: https://doi.org/10.1007/s10493-015-9926-z

Engelman D, Kiang K, Chosidow O, McCarthy J, Fuller C, Lammie P, et al. Toward the global control of human Scabies: Introducing the international alliance for the control of scabies. PLoS Negl Trop Dis. 2013;7(8):5-8. https://doi.org/10.1371/journal.pntd.0002167 PMid:23951369 DOI: https://doi.org/10.1371/journal.pntd.0002167

Hay RJ, Steer AC, Chosidow O, Currie BJ. Scabies: A suitable case for a global control initiative. Curr Opin Infect Dis. 2013;26(2):107-9. https://doi.org/10.1097/qco.0b013e32835e085b PMid:23302759 DOI: https://doi.org/10.1097/QCO.0b013e32835e085b

Grover C, Jakhar D. Dermoscopy in the diagnosis of scabies. Int J Dermoscopy. 2017;1(2):1-2. DOI: https://doi.org/10.5005/jp-journals-10061-0017

Amanda FZ, Hastutiek P, Sabdoningrum EK, Suprihati E, Eliyan H. The conformity of diagnostic test between burrow ink test method with a skin scrapping method of scabies in rabbit (Lepus domesticus). J Pharm Sci. 2018;2(1):29-32. https://doi.org/10.20473/jops.v2i1.16381 DOI: https://doi.org/10.20473/jops.v2i1.16381

Amer S, Wahab TA, Metwaly AE, Ye J, Roellig D, Feng Y, et al. Preliminary molecular characterizations of Sarcoptes scabiei (Acari: Sarcoptidae) from farm animals in Egypt. PLoS One. 2014;9(4):1-6. https://doi.org/10.1371/journal.pone.0094705 DOI: https://doi.org/10.1371/journal.pone.0094705

Alasaad S, Permunian R, Gakuya F, Mutinda M, Soriguer RC, Rossi L. Sarcoptic-mange detector dogs used to identify infected animals during outbreaks in wildlife. BMC Vet Res. 2012;8:110. https://doi.org/10.1186/1746-6148-8-110 DOI: https://doi.org/10.1186/1746-6148-8-110

Fawcett, RS. Ivermectin use in scabies. Am Fam Physician. 2003;68(6):1089-92. PMid:14524395

Naz S, Chaudhry FR, Rizvi DA, Ismail M. Genetic characterization of Sarcoptes scabiei var. hominis from scabies patients in Pakistan. Trop Biomed. 2018;35(3):796-803.

Tamura K, Stecher K, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. https://doi.org/10.1093/molbev/mst197 PMid:24132122 DOI: https://doi.org/10.1093/molbev/mst197

Harnelly E, Thomy Z, Fathiya N. Phylogenetic analysis of Dipterocarpaceae in Ketambe research station, Gunung Leuser National Park (Sumatra, Indonesia) based on RbcL and MatK genes. Biodiversitas. 2018;19(3):1074-80. https://doi.org/10.13057/biodiv/d190340 DOI: https://doi.org/10.13057/biodiv/d190340

Walton, SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, et al. Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in Northern Australia. Int J Parasitol. 2004;34(7):839-49. https://doi.org/10.1016/j.ijpara.2004.04.002 DOI: https://doi.org/10.1016/j.ijpara.2004.04.002

Walton, SF, Choy JL, Bonson A, Valle A, McBroom J, Taplin D, et al. Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in Northern Australia. Am J Trop Med Hyg. 1999;4:542-7. https://doi.org/10.4269/ajtmh.1999.61.542 PMid:10548286 DOI: https://doi.org/10.4269/ajtmh.1999.61.542

Ugbomoiko, Samuel U, Oyedeji SA, Babamale OA, Heukelbach J. Scabies in resource-poor communities in Nasarawa State, Nigeria: Epidemiology, clinical features and factors associated with infestation. Trop Med Int Health. 2018;3(2):59. https://doi.org/10.3390/tropicalmed3020059 PMid:30274455 DOI: https://doi.org/10.3390/tropicalmed3020059

Pruksachatkunakorn C, Wongthanee A, Kasiwat V. Scabies in Thai orphanages. Pediatr Int. 2003;45(6):719-23. https://doi.org/10.1111/j.1442-200x.2003.01811.x PMid:14651549 DOI: https://doi.org/10.1111/j.1442-200X.2003.01811.x

Terry BC, Kanjah F, Sahr F, Kortequee S, Dukulay I, Gbakima AA. Sarcoptes scabiei infestation among children in a displacement camp in Sierra Leone. Public Health. 2001;115(3):208-11. https://doi.org/10.1016/s0033-3506(01)00445-0 PMid:11429717 DOI: https://doi.org/10.1016/S0033-3506(01)00445-0

Talukder K, Talukder MQ, Farooque MG, Khairul M, Sharmin F, Jerin I, et al. Controlling scabies in madrasahs (Islamic religious schools) in Bangladesh. Public Health. 2013;127(1):83-91. https://doi.org/10.1016/j.puhe.2012.09.004 PMid:23062631 DOI: https://doi.org/10.1016/j.puhe.2012.09.004

Downloads

Published

2020-12-15

How to Cite

1.
Arisandi Y, Anwar C, Salni S, Purnama DH, Novrikasari N, Ghiffari A. Mite Sarcoptes scabiei Varieties Hominis in South Sumatra: Specific Identification and Comparative Study. Open Access Maced J Med Sci [Internet]. 2020 Dec. 15 [cited 2024 Nov. 18];8(A):938-42. Available from: https://oamjms.eu/index.php/mjms/article/view/5562