A Histologic and Histomorphometric Analysis of Bone Tissue Regeneration with Perforated Bone Allograft in Rabbit Femur Defect
DOI:
https://doi.org/10.3889/oamjms.2021.5588Keywords:
Bone regeneration, Bone defect, Bone allograft, Marburg bone bankAbstract
AIM: The aim of this study is to provide a comparative histopathological evaluation of the regeneration of bone defect filling with perforated antibiotic-impregnated bone allograft.
MATERIALS AND METHODS: Seventy-two healthy rabbits (24 rabbits in each group) were used for this study. Bone defects (3-mm diameter, 10-mm depth) were created in the femur. Human femoral head prepared according to the Marburg bone bank system was used as a bone allograft. The control group did not receive any filling. The experimental groups were as follows: Group 1 – the defects were filled with bone allografts and Group 2 – Perforated gentamycin-impregnated bone allografts. The animals were euthanized after 14, 30, and 60 days. Evaluations consisted of histology at 14-, 30-, and 60-days post-surgery.
RESULTS: A mature bone formation in the group without a bone allograft occurred after 30 days and the group with an allograft after 14 days. In the groups with an allograft, a bone marrow defect was noted as complete closure after 30 days. Histomorphometric analysis showed that in the group with an antibiotic-impregnated bone, allograft leads to increased resorption of the allograft in the intramedullary space compared to group without antibiotic.
CONCLUSION: We believe that a perforated allograft as a result of clinical trials may be obvious and economically affordable in the treatment of bone defects. The use of gentamycin-impregnated bone allografts may be of value in the prevention and treatment of bone infections.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma 2018;32(1):S7-11. https://doi.org/10.1097/bot.0000000000001115 PMid:29461395
Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224-47. https://doi.org/10.1016/j.bioactmat.2017.05.007 PMid:29744432
Jörg AA, Brigitte VR, Marc B, Margarethe HA. Bone grafts and bone replacements. In: Musculoskeletal System. Amsterdam, Netherlands: Elsevier; 2014. p. 1081-95.
Fesseha H, Fesseha Y. Bone grafting, its principle and application: A review. Osteol Rheumatol Open J. 2020;1(1):43-50.
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445-61. https://doi.org/10.1007/s10856-014-5240-2 PMid:24865980
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(2):96-101. PMid:11716023
Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schütz MA, Duda GN, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009;30(12):2149-63. https://doi.org/10.1016/j.biomaterials.2008.12.050 PMid:19211141
Tavridou A, Lalidou F, Kolios G, Tavridou A, Drosos G. Bone grafts as carriers for local antibiotic delivery for the treatment and prevention of bone infections. Surg Technol Int. 2014;25:239-45. PMid:25433347
van Vugt TA, Geurts J, Arts JJ. Clinical application of antimicrobial bone graft substitute in osteomyelitis treatment: A systematic review of different bone graft substitutes available in clinical treatment of osteomyelitis. Biomed Res Int. 2016;2016:6984656. https://doi.org/10.1155/2016/6984656 PMid:26904683
Peeters A, Putzeys G, Thorrez L. Current insights in the application of bone grafts for local antibiotic delivery in bone reconstruction surgery. J Bone Jt Infect. 2019;4(5):245-53. https://doi.org/10.7150/jbji.38373 PMid:31700774
Metsemakers WJ, Fragomen AT, Moriarty TF, Morgenstern M, Egol KA, Zalavras C, et al, Fracture-related Infection (FRI) Consensus Group. Evidence-based recommendations for local antimicrobial strategies and dead space management in fracture-related infection. J Orthop Trauma. 2020;34(1):18-29. https://doi.org/10.1097/bot.0000000000001615 PMid:31464858
Fassbender M, Minkwitz S, Kronbach Z. Local gentamicin application does not interfere with bone healing in a rat model. Bone. 2013;55(2):298-304. https://doi.org/10.1016/j.bone.2013.04.018 PMid:23631877
Haleem AA, Rouse MS, Lewallen DG, Hanssen AD, Steckelberg JM, Patel R. Gentamicin and vancomycin do not impair experimental fracture healing. Clin Orthop Relat Res. 2004;427:22-4. https://doi.org/10.1097/01.blo.0000144477.43661.59 PMid:15552131
Lindsey RW, Probe R, Miclau T, Miclau T, Alexander JW. The effects of antibiotic-impregnated autogeneic cancellous bone graft on bone healing. Clin Orthop Relat Res. 1993;291:303-12. https://doi.org/10.1097/00003086-199306000-00035 PMid:8504612
Durmuşlar MC, Balli U, Türer A, Önger ME, Çelik HH. Radiological and stereological evaluation of the effect of rifampin on bone healing in critical-size defects. J Craniofac Surg. 2016;27(6):1481-5. https://doi.org/10.1097/scs.0000000000002762 PMid:27603686
Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res. 2011;29(7):1070-4. PMid:21567453
Tuncay I, Ozbek H, Kosem M, Unal O. A comparison of effects of fluoroquinolones on fracture healing (an experimental study in rats). Ulus Travma Acil Cerrahi Derg. 2005;11(1):17-22. PMid:15688263
Perry AC, Prpa B, Rouse MS. Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin Orthop Relat Res. 2003;414:95-100. PMid:12966282
Tuleubaev BE, Abiev TM, Saginova DA, Saginov A.M., Koshanova AA,Rudenko AP, et al. A Device for Perforating a Bone Allograft. Patent for Utility Model of the Republic of Kazakhstan № 3980: 2019.
Pruss A, Seibold M, Benedix F, Frommelt L, von Garrel T, Gürtler L, et al. Validation of the Marburg bone bank system for thermodisinfection of allogenic femoral head transplants using selected bacteria, fungi, and spores. Biologicals. 2003;31(4):287- 94. https://doi.org/10.1016/j.biologicals.2003.08.002 PMid:14624799
Kvist PH, Iburg T, Bielecki M, Gerstenberg M, Buch-Rasmussen T, Hasselager E, et al. Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs. Diabetes Technol Ther. 2006;8(4):463-75. https://doi.org/10.1089/dia.2006.8.463 PMid:16939371
Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5-24. https://doi.org/10.1016/s0169-409x(97)00048-3 PMid:10837562
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86-100. https://doi. org/10.1016/j.smim.2007.11.004
PMid:18162407
Rihova B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev. 2000;42(1-2):65-80. https://doi.org/10.1016/s0169-409x(00)00054-5 PMid:10942815
Houglum PA. In: Perrin DH, editor. Theraputic Exercise for Musculoskeletal Injuries. United States: Human Kinetics; 2005.
Shishatskaya EI, Volova TG, Puzyr AP, Mogil’naya OA, Efremov SN, Gitelson II, et al. Tissue morphogenesis under the conditions of implantation of polyhydroxybutyrate, a biodegradable polymer. Dokl Biol Sci. 2001;383:123-6. PMid:12053561
Christen T, Nahrendorf M, Wildgruber M, Swirski FK, Aikawa E, Waterman P, et al. Molecular imaging of innate immune cell function in transplant rejection. Circulation. 2009;119(14):1925-32. https://doi.org/10.1161/circulationaha.108.796888 PMid:19332470
Xu L, Bauer J, Siedlecki CA, State TP. Proteins, platelets and blood coagulation at biomaterial interfaces. Colloids Surfaces B Biointerfaces. 2014;124:49-68. https://doi.org/10.1016/j.colsurfb.2014.09.040 PMid:25448722
Robbins SL, Kumar V, Cotran R. Pathologic Basis of Disease. 5th ed. Netherlands: Elsevier; 1994. p. 61.
Lewandrowski KU, Schollmeier G, Ekkemkamp A, Uhthoff HK, Tomford WW. Incorporation of perforated and demineralized cortical bone allografts. Part I: Radiographic and histologic evaluation. Biomed Mater Eng. 2001;11(3):197-207. PMid:11564903
Lewandrowski KU, Schollmeier G, Ekkemkamp A, Uhthoff HK, Tomford WW. Improved osteoinduction of cortical bone allografts: A study of the effects of laser perforation and partial demineralization. J Orthop Res. 1997;15(5):748-56. https://doi.org/10.1002/jor.1100150518 PMid:9420606
Caballe-Serrano J, Schuldt Filho G, Bosshardt DD, Gargallo- Albiol J, Buser D, Gruber R. Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clin Oral Implants Res. 2016;27(2):226-32. https://doi.org/10.1111/clr.12573 PMid:25754222
Downloads
Published
How to Cite
License
Copyright (c) 2021 B. E. Tuleubaev, E. K. Kamyshansky, Saginova Dina Saginova, E. R. Tashmetov, A. A. Koshanova (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0