The Normal Ratio of Th17 and Th1 Post-mesenchymal Stem Cells Coculture with PBMCs of Systemic Lupus Erythematosus Patients
DOI:
https://doi.org/10.3889/oamjms.2021.5604Keywords:
MSCs, Th1, Th17, SLEAbstract
BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by altered T-cell population homeostasis, including Th1 and Th17 populations. Mesenchymal stem cell (MSC)-induced i-Treg in SLE milieu can suppress Th17 cell populations; however, Th1 cell population status as a response to the Th17 decrease remains unclear. Therefore, improving SLE flare by suppressing Th17 and constantly controlling Th1 under normal level through MSCs administration is crucial.
AIM: This study aimed to investigate the role of MSCs in suppressing Th17 cell populations and controlling Th1 to a normal level by in vitro coculturing MSCs with PBMC from SLE patients..
METHODS: This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups: Sham, control, and three treatment groups. The treatment groups were treated by coculturing MSCs to PBMCs with a ratio of 1:10, 1:25, and 1:40 for 72 h incubation. Th1 and Th17 cells were analyzed by flow cytometry.
RESULTS: This study showed that there was no significance difference of the percentages of Th1 cells on all treatment groups. On the other hand, the percentages of Th17 were significantly decreased on T1 group. Interestingly, there was also significant decrease of Th1-like Th17 cells population on T1 group.
CONCLUSIONS: MSCs may suppress Th17 and control Th1 to a normal level by in vitro coculturing MSCs with PBMC from SLE.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of human systemic lupus erythematosus: A cellular perspective. Trends Mol Med. 2017;23(7):615-35. https://doi.org/10.1016/j.molmed.2017.05.006 PMid:28623084 DOI: https://doi.org/10.1016/j.molmed.2017.05.006
Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus-an update. Curr Opin Immunol. 2012;24(6):651-7. PMid:23131610 DOI: https://doi.org/10.1016/j.coi.2012.10.004
Comte D, Karampetsou MP, Tsokos GC. T cells as a therapeutic target in SLE. Lupus. 2015;24(4-5):351-63. https://doi.org/10.1177/0961203314556139 PMid:25801878 DOI: https://doi.org/10.1177/0961203314556139
Shah K, Lee WW, Lee SH, et al. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(2):R53. https://doi.org/10.1186/ar2964 PMid:20334681 DOI: https://doi.org/10.1186/ar2964
Alunno A, Bartoloni E, Bistoni O, Nocentini G, Ronchetti S, Caterbi S, et al. Balance between regulatory T and Th17 cells in systemic lupus erythematosus: The old and the new. Clin Dev Immunol. 2012;2012:823085. https://doi.org/10.1155/2012/823085 PMid:22761634 DOI: https://doi.org/10.1155/2012/823085
Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The role of il-17 and th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp (Warsz). 2015;63(6):435-49. https://doi.org/10.1007/s00005-015-0344-z PMid:26062902. DOI: https://doi.org/10.1007/s00005-015-0344-z
Pan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16(1):19-30. https://doi.org/10.1007/s12519-019-00229-3 PMid:30796732 DOI: https://doi.org/10.1007/s12519-019-00229-3
Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/ Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 2015;72(2):146-53. https://doi.org/10.1016/j.cyto.2014.12.027 PMid:25647269. DOI: https://doi.org/10.1016/j.cyto.2014.12.027
Dossybayeva K, Abdukhakimova D, Poddighe D. Basophils and systemic lupus erythematosus in murine models and human patients. Biology. 2020;9(10):308. https://doi. org/10.3390/ biology9100308 PMid:32977704. DOI: https://doi.org/10.3390/biology9100308
Pan Q, Gong L, Xiao H, Feng Y, Li L, Deng Z, et al. Basophil activation-dependent autoantibody and interleukin-17 production exacerbate systemic lupus erythematosus. Front Immunol. 2017;8:348. https://doi.org/10.3389/fimmu.2017.00787 PMid:28396669.
Poddighe D, Marseglia GL. Commentary: Basophil activation-dependent autoantibody and interleukin-17 production exacerbate systemic lupus erythematosus. Front Immunol. 2017;8:787. https://doi.org/10.3389/fimmu.2017.00787 PMid:28736553 DOI: https://doi.org/10.3389/fimmu.2017.00787
Baghaei K, Hashemi SM, Tokhanbigli S, Rad AA, Assadzadeh- Aghdaei H, Sharifian A, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench. 2017;10(3):208-13. PMid:29118937
Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. 2012;18(2):128- 34. https://doi.org/10.1016/j.molmed.2011.10.004 PMid:22118960 DOI: https://doi.org/10.1016/j.molmed.2011.10.004
Darlan DM, Munir D, Putra A, Jusuf NK. MSCs-released TGFβ1 generate CD4+CD25+Foxp3+ in T-reg cells of human SLE PBMC. J Formos Med Assoc. 2021;120(1 Pt 3):602-8. https://doi.org/10.1016/j.jfma.2020.06.028 PMid:32718891 DOI: https://doi.org/10.1016/j.jfma.2020.06.028
Ikhsan R, Putra A, Munir D, Darlan DM, Suntoko B, Kustiyah AR, et al. Mesenchymal stem cells induce regulatory T-cell population in human SLE. BJMS 2020;19(4):743e8. https://doi.org/10.3329/bjms.v19i4.46635 DOI: https://doi.org/10.3329/bjms.v19i4.46635
Putra A, Ridwan FB, Putridewi AI, Kustiyah AR, Wirastuti K, Sadyah NA, et al. The role of TNF-α induced MSCs on suppressive inflammation by increasing TGF-β and IL-10. Open Access Maced J Med Sci. 2018;6(10):1779-83. https://doi.org/10.3889/oamjms.2018.404 PMid:30455748 DOI: https://doi.org/10.3889/oamjms.2018.404
Luz-Crawford P, Kurte M, Bravo-Alegría J, Contreras R, Nova- Lamperti E, Tejedor G, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther. 2013;4(3):65. https://doi.org/10.1186/scrt216 PMid:23734780 DOI: https://doi.org/10.1186/scrt216
Wang D, Huang S, Yuan X, Liang J, Xu R, Yao G, et al. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol Immunol. 2017;14(5):423-31. https://doi.org/10.1038/cmi.2015.89 PMid:26435067 DOI: https://doi.org/10.1038/cmi.2015.89
Geng L, Tang X, Wang S, Sun Y, Wang D, Tsao BP, et al. Reduced Let-7f in bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Front Immunol. 2020;11:233. https://doi.org/10.3389/fimmu.2020.00233 PMid:32133007 DOI: https://doi.org/10.3389/fimmu.2020.00233
Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467-76. https://doi.org/10.1016/j.immuni.2004.08.018 PMid:15485625 DOI: https://doi.org/10.1016/j.immuni.2004.08.018
Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human RORγt+ TH17 cells preferentially differentiate from naive Foxp3+Treg in the presence of lineagespecific polarizing factors. Proc Natl Acad Sci U S A. 2010;107(45):19402-7. https://doi.org/10.1073/pnas.1008247107 PMid:20962281 DOI: https://doi.org/10.1073/pnas.1008247107
Downloads
Published
How to Cite
License
Copyright (c) 2021 Azizah Retno Kustiyah, Agung Putra, Taufiqurrachman Nasihun, Rajesh Ramasamy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0