Clinical Application Prospect of Human Synovial Tissue Stem Cells from Osteoarthritis Grade IV Patients in Cartilage Regeneration
DOI:
https://doi.org/10.3889/oamjms.2021.5627Keywords:
Synovial tissue, Stem cells, CartilageAbstract
Osteoarthritis (OA) is a joint problem that continues to increase in prevalence as life expectancy increases. OA can affect any joint, especially those that support body weight such as the knee and hip joint. Although both primary and secondary OA have the same clinical symptoms, it can be caused by different etiologies. OA is no longer considered a degenerative disease, although age is still a major factor. Various attempts have been made to regenerate joint cartilage damaged by OA. The use of stem cells in OA therapy is a very promising opportunity. Stem cells are undifferentiated biological cells and are multipotent to differentiate into specific cells. In principle, local stem cells are the best source of stem cells to regenerate the surrounding tissue. The synovial membrane is a tissue in the joint that can regenerate. After synovectomy surgery, repair, and growth of synovial tissue occur rapidly. Synovial tissue as a source of stem cells only provides a limited amount. One source of synovial tissue that can be used is tissue taken from the total knee replacement process in grade 4 OA patients. However, it is necessary to prove the potential of synovial tissue stem cells originating from old-age donors.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Indonesian Rheumatology Association. Diagnosis dan Penatalaksanaan Osteoarthritis; 2014. p. 2-3.
Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204. PMid:17316462
de Sousa EB, Casado PL, Neto VM, Duarte ME, Aguiar DP. Synovial fluid and synovial membrane mesenchymal stem cells: Latest discoveries and therapeutic perspectives. Stem Cell Res Ther. 2014;5(5):112. https://doi.org/10.1186/scrt501 PMid:25688673 DOI: https://doi.org/10.1186/scrt501
Kuszel L, Trzeciak T, Richter M, Czarny-Ratajczak M. Osteoarthritis and telomere shortening. J Appl Genet. 2015;56(2):169-76. https://doi.org/10.1007/s13353-014-0251-8 PMid:25366419 DOI: https://doi.org/10.1007/s13353-014-0251-8
Michael JW, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int. 2010;107(9):152-62. https://doi.org/10.3238/arztebl.2010.0152 PMid:20305774 DOI: https://doi.org/10.3238/arztebl.2010.0152
Sinkov V, Cymet T. Osteoarthritis: Understanding the pathophysiology, genetics, and treatments. J Natl Med Assoc. 2003;95(6):475-82. PMid:12856913
Ashkavand Z, Malekinejad H, Vishwanath BS. The pathophysiology of osteoarthritis. J Pharm Res. 2013;7(1):132-8. DOI: https://doi.org/10.1016/j.jopr.2013.01.008
Dewing K, Setter SM, Slusher BA. Osteoarthritis and Rheumatoid Arthritis 2012: Pathophysiology, Diagnosis, and Treatment, Nurse Practitioner Healthcare Foundation; 2012.
Ishiguro N, Kojima T, Poole AR. Mechanism of cartilage destruction in osteoarthritis. Nagoya J Med Sci. 2002;65(3-4):73-84. PMid:12580533
Loeser R. Molecular mechanisms of cartilage destruction in osteoarthritis. J Musculoskelet Neuronal Interact. 2008;8(4):303-6. PMid:19147949
Tchetina EV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis. 2011;2011:683970. https://doi.org/10.1155/2011/683970 PMid:22046522 DOI: https://doi.org/10.1155/2011/683970
Wang M, Shen J, Jin H, Im HJ, Sandy J, Chen D. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann N Y Acad Sci. 2011;1240:61-9. https://doi.org/10.1111/j.1749-6632.2011.06258.x PMid:22172041 DOI: https://doi.org/10.1111/j.1749-6632.2011.06258.x
Carmona JU, Prades M. Pathophysiology of osteoarthritis. Compend Equine. 2009;4(1):28-40.
Monemdjou R, Kapoor M. Synovium in the pathophysiology of osteoarthritis. Clin Pract. 2010;7(6):661. DOI: https://doi.org/10.2217/thy.10.72
Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625-35. https://doi.org/10.1038/nrrheum.2010.159 PMid:20924410 DOI: https://doi.org/10.1038/nrrheum.2010.159
Wojdasiewicz P, Poniatowski ŁA, Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459. https://doi.org/10.1155/2014/561459 PMid:24876674 DOI: https://doi.org/10.1155/2014/561459
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471-8. PMid:21788902 DOI: https://doi.org/10.1097/BOR.0b013e328349c2b1
Madry H, Luyten FP, Facchini A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):407-22. https://doi.org/10.1007/s00167-011-1705-8 PMid:22009557 DOI: https://doi.org/10.1007/s00167-011-1705-8
Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro. J Nutr. 2005;135(9):2096-102. https://doi.org/10.1093/jn/135.9.2096 PMid:16140882 DOI: https://doi.org/10.1093/jn/135.9.2096
Burnett BP, Levy R, Cole BJ. Metabolic mechanisms in the pathogenesis of osteoarthritis-a review. J Knee Surg. 2006;19(3):191-7. PMid:16893158 DOI: https://doi.org/10.1055/s-0030-1248105
Grenier S, Bhargava MM, Torzilli PA. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J Biomech. 2014;47(3):645-52. https://doi.org/10.1016/j.jbiomech.2013.11.050 PMid:24360770 DOI: https://doi.org/10.1016/j.jbiomech.2013.11.050
Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77-94. https://doi.org/10.1177/1759720x12467868 PMid:23641259 DOI: https://doi.org/10.1177/1759720X12467868
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):376- 87. https://doi.org/10.1016/s0140-6736(14)60802-3 PMid:25748615 DOI: https://doi.org/10.1016/S0140-6736(14)60802-3
Harrison-Brown M, Scholes C, Hafsi K, Marenah M, Li J, Hassan F, et al. Efficacy and safety of culture-expanded, mesenchymal stem/stromal cells for the treatment of knee osteoarthritis: A systematic review protocol. J Orthop Surg Res. 2019;14(1):34. https://doi.org/10.1186/s13018-019-1070-8 PMid:30683159 DOI: https://doi.org/10.1186/s13018-019-1070-8
Song Y, Zhang J, Xu H, Lin Z, Chang H, Liu W, et al. Mesenchymal stem cells in knee osteoarthritis treatment: A systematic review and meta-analysis. J Orthop Translat. 2020;24:121-30. PMid:32913710 DOI: https://doi.org/10.1016/j.jot.2020.03.015
Kim C, Keating A. Cell therapy for knee osteoarthritis: Mesenchymal stromal cells. Gerontology. 2019;65(3):294-8. https://doi.org/10.1159/000496605 PMid:30897578 DOI: https://doi.org/10.1159/000496605
Harrell CR, Markovic BS, Fellabaum C, Arsenijevic A, Volarevic V. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed Pharmacother. 2019;109:2318-26. https://doi.org/10.1016/j.biopha.2018.11.099 PMid:30551490 DOI: https://doi.org/10.1016/j.biopha.2018.11.099
Uzieliene I, Bernotas P, Mobasheri A, Bernotiene E. The role of physical stimuli on calcium channels in chondrogenic differentiation of mesenchymal stem cells. Int J Mol Sci. 2018;19(10):2998. https://doi.org/10.3390/ijms19102998 PMid:30275359 DOI: https://doi.org/10.3390/ijms19102998
Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422-8. https://doi.org/10.1016/j.jcyt.2014.01.035 PMid:22724879 DOI: https://doi.org/10.1016/j.jcyt.2014.01.035
Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: The current status. Cell Tissue Res. 2012;347(3):613-27. https://doi.org/10.1007/s00441-011-1243-1 PMid:22030892 DOI: https://doi.org/10.1007/s00441-011-1243-1
Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev. 2015;84:123-34. https://doi.org/10.1016/j.addr.2014.06.006 DOI: https://doi.org/10.1016/j.addr.2014.06.006
PMid:24993610
Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv. 2013;31(5):654-68. https://doi.org/10.1016/j. biotechadv.2012.08.001
PMid:22902273
Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta. 2014;1840(8):2414-40. https://doi.org/10.1016/j.bbagen.2014.02.030 DOI: https://doi.org/10.1016/j.bbagen.2014.02.030
PMid:24608030
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9(10):584-94. https://doi. org/10.1038/nrrheum.2013.109 DOI: https://doi.org/10.1038/nrrheum.2013.109
PMid:2388106857
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Rizki Rahmadian, Marlina Adly, Ismail Hadisoebroto Dilogo, Gusti Revilla (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0