Comparative Dose of Intracarotid Autologous Bone Marrow Mononuclear Therapy in Chronic Ischemic Stroke in Rats
DOI:
https://doi.org/10.3889/oamjms.2021.5675Keywords:
Bone marrow mononuclear cells, Chronic infarct, Dose, Intracarotid, Rats brainAbstract
Research on chronic ischemic stroke is limited. One of the more promising approaches showing positive effects in the acute stage is mononuclear bone marrow cell therapy. This research may be the first which presents data about the optimum dose of bone marrow mononuclear cells (BM-MNCs) for chronic ischemic stroke in rats and discusses factors influencing recovery in the chronic stage.
We performed temporary middle cerebral artery occlusion (MCAO) procedures on the rats which were then randomly assigned to one of two experimental groups in which they were given either low or high doses of autologous BM-MNCs (5 million or 10 million cells per kg body weight).
Rat brains were fixed for HE, CD31, and doublecortin staining for analysis of the effects. Rat behavior was assessed weekly using the cylinder test and a modified neurological severity score (NSS) test.
In the four weeks prior to administration of BM-MNC, cylinder test scores improved to near normal, and NSS test scores improved moderately. The infarct zone decreased significantly (p <0,01), there was an improvement in angiogenesis (p = 0.1590) and a significant improvement in neurogenesis (p <0,01). Reduction of the infarct zone was associated with a higher dose whereas both higher and lower doses were found to have a similar effect on improving angiogenesis, and neurogenesis. Recovery was superior after twelve weeks compared with the recovery assessment at eight weeks.
In conclusion, a dose of 10 million cells was more effective than a dose of 5 million cells per kg body weight for reducing the infarct zone and ameliorating neurogenesis. There was an improvement of histopathological parameters associated with the longer infarct period.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Brenneman M, Sharma S, Harting M, Strong R, Cox CS, Aronowski J, et al. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab. 2010;30(1):140- 9. https://doi.org/10.1038/jcbfm.2009.198 PMid:19773802 DOI: https://doi.org/10.1038/jcbfm.2009.198
Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, et al. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke. 2007;38(7):2150-6. https://doi.org/10.1161/strokeaha.106.481218 PMid:17525391 DOI: https://doi.org/10.1161/STROKEAHA.106.481218
Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema, I: A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jnp J Stroke. 1986;8:1-8. DOI: https://doi.org/10.3995/jstroke.8.1
Longa EZ, Weinstein PR, Carlson S, Cummins RJ. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20:84-91. https://doi.org/10.1161/01.str.20.1.84 PMid:2643202 DOI: https://doi.org/10.1161/01.STR.20.1.84
Makkiyah FA, Sadewo W. Technical report: Simple method of animal stroke model of luminal occlusion of middle cerebral artery in Indonesia. Surg Neurol Int. 2019;10(143):12-20. https://doi.org/10.25259/sni_62_2019 PMid:31528478 DOI: https://doi.org/10.25259/SNI_62_2019
Ordodi VL, Mic FA, Mic AA, Tanasie G, Ionac M, Sandesc D, et al. Bone marrow aspiration from rats: A minimally invasive procedure. Lab Anim. 2006;35(5):41-4. https://doi.org/10.1038/laban0506-41 PMid:16645615 DOI: https://doi.org/10.1038/laban0506-41
Serrano T, Pierozan P, Alberti E, Blanco L, de la Cuétara Bernal K, González ME, et al. Transplantation of mononuclear cells from bone marrow in a rat model of Huntington’s disease. Journal of Neurorestoratology . 2016;4(1):95-106. https://doi.org/10.2147/jn.s118435 DOI: https://doi.org/10.2147/JN.S118435
Liao SJ, Lin JW, Pei Z, Liu CL, Zeng JS, Huang RX. Enhanced angiogenesis with dl -3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res. 2009;1289:69-78. https://doi.org/10.1016/j.brainres.2009.06.018 DOI: https://doi.org/10.1016/j.brainres.2009.06.018
Hu X, Zheng H, Yan T, Pan S, Fang J, Jiang R, et al. Physical exercise induces expression of CD31 and facilitates neural function recovery in rats with focal cerebral infarction. J Neurol Res. 2010;32(4):397-402. https://doi.org/10.1179/016164110x12670144526309 PMid:20483007 DOI: https://doi.org/10.1179/016164110X12670144526309
Balkaya MG, Trueman RC, Boltze J, Corbett D, Jolkkonen J. Behavioral outcome measures to improve experimental stroke research. Behav Brain Res 2018;352:161-71. https://doi.org/10.1016/j.bbr.2017.07.039 PMid:28760700 DOI: https://doi.org/10.1016/j.bbr.2017.07.039
Trueman RC, Diaz C, Farr TD, Harrison DJ, Fuller A, Tokarczuk PF, et al. Systematic and detailed analysis of behavioural tests in the rat middle cerebral artery occlusion model of stroke: Tests for long-term assessment. J Cereb Blood Flow Metab. 2017;37(4):1349-61. https://doi.org/10.1177/0271678x16654921 PMid:27317655 DOI: https://doi.org/10.1177/0271678X16654921
Encarnacion A, Horie N, Keren-Gill H, Bliss TM, Steinberg GK, Shamloo M. Long-term behavioral assessment of function in an experimental model for ischemic stroke. J Neurosci Methods. 2011;196(2):247- 57. https://doi.org/10.1016/j.jneumeth.2011.01.010 PMid:21256866 DOI: https://doi.org/10.1016/j.jneumeth.2011.01.010
Garbuzova-Davis S, Haller E, Williams SN, Haim ED, Tajiri N, Hernandez-Ontiveros DG, et al. Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. J Comp Neurol. 2014;522(13):3120- 37. https://doi.org/10.1002/cne.23582 PMid:24610730 DOI: https://doi.org/10.1002/cne.23582
Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153(1):175-81. https://doi.org/10.1016/j.neuroscience.2008.02.012 PMid:18367342 DOI: https://doi.org/10.1016/j.neuroscience.2008.02.012
Kamiya N, Ueda M, Igarashi H, Nishiyama Y, Suda S, Okubo S, et al. In vivo monitoring of arterially transplanted bone marrow mononuclear cells in a rat transient focal brain ischemia model using magnetic resonance imaging. J Neurol. 2013;35(6):573-9. https://doi.org/10.1179/1743132813y.0000000171 PMid:23561042 DOI: https://doi.org/10.1179/1743132813Y.0000000171
Prabhakar S, Muthaian R, Chabbra R, Anand A. Analysis of homing potential of marrow-derived mononuclear cells in an experimentally-induced brain stroke mouse model. J Brain Injury. 2010;24(12):1485-90. https://doi.org/10.3109/02699052.2010.520298 PMid:20961175 DOI: https://doi.org/10.3109/02699052.2010.520298
Kasam M, Yang B, Strong R, Schaar K, Misra V, Xi X, et al. Nitric oxide facilitates delivery and mediates improved outcome of autologous bone marrow mononuclear cells in a rodent stroke model. PLoS One. 2012;7(3):e32793. https://doi.org/10.1371/journal.pone.0032793 PMid:22412926 DOI: https://doi.org/10.1371/journal.pone.0032793
Bombardi C, Grandis A, Chiocchetti R, Lucchi ML, Callegari E, Bortolami R. Membrane-transport systems in the fenestrated capillaries of the area postrema in rat and calf. J Anat Record. 2004;279(1):664-8. https://doi.org/10.1002/ar.a.20041 PMid:15224407 DOI: https://doi.org/10.1002/ar.a.20041
Bhasin A, Srivastava MP, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: A clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003-8. https://doi.org/10.1016/j.clineuro.2012.10.015 PMid:23183251 DOI: https://doi.org/10.1016/j.clineuro.2012.10.015
Bhasin A, Srivastava MP, Mohanty S, Vivekanandhan S, Sharma S, Kumaran S, et al. Paracrine mechanisms of intravenous bone marrow-derived mononuclear stem cells in chronic ischemic stroke. Cerebrovasc Dis Extra. 2016;6(3):107- 19. https://doi.org/10.1159/000446404 PMid:27846623 DOI: https://doi.org/10.1159/000446404
Arvidsson A, Kokaia Z, Lindvall O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. J Eur J Neurosci. 2001;14(1):10-8. https://doi.org/10.1046/j.0953-816x.2001.01611.x PMid:11488944 DOI: https://doi.org/10.1046/j.0953-816x.2001.01611.x
Yagita Y, Kitagawa K, Ohtsuki T, Takasawa KI, Miyata T, Okano H, et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. J Stroke. 2001;32(8):1890-6. https://doi.org/10.1161/01.str.32.8.1890 PMid:11486122 DOI: https://doi.org/10.1161/01.STR.32.8.1890
Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke. 2007;38(11):3032-9. https://doi.org/10.1161/strokeaha.107.488445 PMid:17901386 DOI: https://doi.org/10.1161/STROKEAHA.107.488445
Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke. J Neural Regen Res. 2020;15(1):16. https://doi.org/10.4103/1673-5374.264442 PMid:31535636 DOI: https://doi.org/10.4103/1673-5374.264442
Huang P, Freeman WD, Edenfield BH, Brott TG, Meschia JF, Zubair AC. Safety and efficacy of intraventricular delivery of bone marrow-derived mesenchymal stem cells in hemorrhagic stroke model. Sci Rep. 2019;9(1):1-9. https://doi.org/10.1038/s41598-019-42182-1 PMid:30952961 DOI: https://doi.org/10.1038/s41598-019-42182-1
Wang G, Guo Q, Hossain M, Fazio V, Zeynalov E, Janigro D, et al. Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice. Brain Res. 2009;1294:183-92. https://doi.org/10.1016/j.brainres.2009.07.070 PMid:19646426 DOI: https://doi.org/10.1016/j.brainres.2009.07.070
Cai H, Ma Y, Jiang L, Mu Z, Jiang Z, Chen X, et al. Hypoxia response element-regulated MMP-9 promotes neurological recovery via glial scar degradation and angiogenesis in delayed stroke. Mol Ther. 2017;25(6):1448-59. https://doi.org/10.1016/j.ymthe.2017.03.020 PMid:28396199 DOI: https://doi.org/10.1016/j.ymthe.2017.03.020
Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. J Exp Neurol. 2008;209(2):294-301. https://doi.org/10.1016/j.expneurol.2007.05.014 PMid:17617407 DOI: https://doi.org/10.1016/j.expneurol.2007.05.014
Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci. 2006;26(22):5996- 6003. https://doi.org/10.1523/jneurosci.5380-05.2006 PMid:16738242 DOI: https://doi.org/10.1523/JNEUROSCI.5380-05.2006
Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, et al. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci. 2006;26(13):3491-5. https://doi.org/10.1523/jneurosci.4085-05.2006 PMid:16571756 DOI: https://doi.org/10.1523/JNEUROSCI.4085-05.2006
Zhao BQ, Tejima E, Lo E. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007;38(2):748-52. https://doi.org/10.1161/01.str.0000253500.32979.d1 PMid:17261731 DOI: https://doi.org/10.1161/01.STR.0000253500.32979.d1
Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández- Cadenas I, Ribó M, Molina CA, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37(6):1399-406. https://doi.org/10.1161/01.str.0000223001.06264.af PMid:16690896 DOI: https://doi.org/10.1161/01.STR.0000223001.06264.af
Kikuchi-Taura A, Okinaka Y, Takeuchi Y, Ogawa Y, Maeda M, Kataoka Y, et al. Bone marrow mononuclear cells activate angiogenesis via gap junction-mediated cell-cell interaction. Stroke. 2020;51(4):1279-89. https://doi.org/10.1161/strokeaha.119.028072 PMid:32075549 DOI: https://doi.org/10.1161/STROKEAHA.119.028072
Giraldi-Guimarães A, Rezende-Lima M, Bruno FP, Mendez- Otero R. Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Res. 2009;1266:108- 20. https://doi.org/10.1016/j.brainres.2009.01.062 PMid:19368806 DOI: https://doi.org/10.1016/j.brainres.2009.01.062
Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res. 2004;1007(1):1-9. https://doi.org/10.1016/j.brainres.2003.09.084 PMid:15064130 DOI: https://doi.org/10.1016/j.brainres.2003.09.084
Weise G, Lorenz M, Pösel C, Riegelsberger UM, Störbeck V, Kamprad M, et al. Transplantation of cryopreserved human umbilical cord blood mononuclear cells does not induce sustained recovery after experimental stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2014;34(1):e1-9. https://doi.org/10.1038/jcbfm.2013.185 PMid:24169850 DOI: https://doi.org/10.1038/jcbfm.2013.185
Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739- 47. https://doi.org/10.1634/stemcells.2005-0281 PMid:16210404 DOI: https://doi.org/10.1634/stemcells.2005-0281
Kim SJ, Moon GJ, Chang WH, Kim YH, Bang OY. Intravenous transplantation of mesenchymal stem cells preconditioned with early phase stroke serum: current evidence and study protocol for a randomized trial. Trials 2013;14(1):317. https://doi.org/10.1186/1745-6215-14-317 PMid:24083670 DOI: https://doi.org/10.1186/1745-6215-14-317
Yasuhara S, Yasunaga Y, Hisatome T, Ishikawa M, Yamasaki T, Tabata Y, et al. Efficacy of bone marrow mononuclear cells to promote bone regeneration compared with isolated CD34+ cells from the same volume of aspirate. Artif Organs. 2010;34(7):594- 9. https://doi.org/10.1111/j.1525-1594.2009.00980.x PMid:20528851 DOI: https://doi.org/10.1111/j.1525-1594.2009.00980.x
Downloads
Published
How to Cite
License
Copyright (c) 2021 Feda Makkiyah, Wismaji Sadewo, Rahmah Nurrizka (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0