Formulation and Pharmacological Studies of Leaves of Moringa (Moringa oleifera), a Novel Hepatoprotection in Oral Drug Formulations

Authors

  • Aristianti Aristianti 1Department of Pharmacology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
  • Nurkhaeri Nurkhaeri Department of Pharmaceutical Technology, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar, Indonesia
  • Vanny Y. Tandiarrang Department of Pharmaceutical Technology, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar, Indonesia
  • Akbar Awaluddin Department of Pharmacology, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar, Indonesia
  • Lukman Muslimin Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.5839

Keywords:

Hepatoprotection, Leaves, Moringa oleifera, Suspension

Abstract

BACKGROUND: Moringa oleifera, Moringaceae, is a tree that is native to South East Asia. Various parts of this tree are commonly used in traditional medicine to treat inflammation, hepatitis, gastric ulcer, and other ailments.

AIM: M. oleifera leaves extract was formulated into stable suspensions, characterized, and then evaluated for hepatoprotection activity against isoniazid.

MATERIALS AND METHODS: The leaves were extracted using cold maceration, and suspensions of extract were prepared using sodium carboxymethyl cellulose (Na-CMC) as suspension agent at various concentrations (0.1, 0.5, and 1.0%). The formulations were analyzed by their appearance, color, odor, and taste. Density, pH, viscosity, re-dispersibility test, and sedimentation volume were observed. The stability of oral suspensions was analyzed in accelerated studies (5°C ± 2°C and 35°C ± 2°C for 12 h for 7 cycles) to find stable formulation, while the hepatoprotection activity was analyzed using an in vivo isoniazid-induced model.

RESULTS: The appearance, color, odor, and taste of the suspensions were shown to be characteristic of the extract. Na-CMC at concentration 0.5% showed good physical properties. Stable suspension at dose 400 mg/kg BW per oral for 28 days exhibited a significant (p < 0.05) decrease in the serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase.

CONCLUSION: Suspension containing M. oleifera leaves extract at 50 mg/5 mL was successfully obtained and showed physical properties that were appropriate and characteristic of this dosage form, suitable for hepatoprotection (400 mg/kg BW), making this an alternative to tablets.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Tuberculosis. Geneva: World Health Organization; 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis. [Last accessed on 2021 Jan 30].

Susilawati TN, Larasati R. A recent update of the diagnostic methods for tuberculosis and their applicability in indonesia: A narrative review. Med J Indones. 2019;28(3):284-91. https://doi.org/10.13181/mji.v28i3.2589 DOI: https://doi.org/10.13181/mji.v28i3.2589

Sotgiu G, Centis R, D’Ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015;5(5):a017822. https://doi.org/10.1101/cshperspect.a017822 PMid:25573773 DOI: https://doi.org/10.1101/cshperspect.a017822

Arbex MA, Varella Mde C, Siqueira HR, Mello FA. Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations. Part 1: First-line drugs. J Bras Pneumol. 2010;36(5):626-40. PMid:21085830 DOI: https://doi.org/10.1590/S1806-37132010000500016

Geremew D, Endalamaw A, Negash M, Eshetie S, Tessema B. The protective effect of isoniazid preventive therapy on tuberculosis incidence among HIV positive patients receiving ART in Ethiopian settings: A meta-analysis. BMC Infect Dis. 2019;19(1):405. https://doi.org/10.1186/s12879-019-4031-2 PMid:31077133 DOI: https://doi.org/10.1186/s12879-019-4031-2

Yadav B, Gunnam A, Thipparaboina R, Nangia AK, Shastri NR. Hepatoprotective cocrystals of isoniazid: Synthesis, solid state characterization, and hepatotoxicity studies. Cryst Growth Des. 2019;19(9):5161-72. https://doi.org/10.1021/acs.cgd.9b00541 DOI: https://doi.org/10.1021/acs.cgd.9b00541

Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid-induced hepatotoxicity: Then and now. Br J Clin Pharmacol. 2016;81(6):1030-6. PMid:26773235

Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1-20. https://doi.org/10.1111/bcp.12885 PMid:27842765 DOI: https://doi.org/10.1111/bcp.12885

Underhill GH, Khetani SR. Advances in engineered human liver platforms for drug metabolism studies. Drug Metab Dispos. 2018;46(11):1626-37. https://doi.org/10.1124/dmd.118.083295 PMid:30135245 DOI: https://doi.org/10.1124/dmd.118.083295

Biswas A, Santra S, Bishnu D, Dhali GK, Chowdhury A, Santra A. Isoniazid and rifampicin produce hepatic fibrosis through an oxidative stress-dependent mechanism. Int J Hepatol. 2020;2020:6987295. https://doi.org/10.1155/2020/6987295 PMid:32373368 DOI: https://doi.org/10.1155/2020/6987295

Cheng DL, Zhu N, Li CL, Lv WF, Fang WW, Liu Y, et al. Significance of malondialdehyde, superoxide dismutase and endotoxin levels in Budd-Chiari syndrome in patients and a rat model. Exp Ther Med. 2018;16(6):5227-35. https://doi.org/10.3892/etm.2018.6835 PMid:30542478 DOI: https://doi.org/10.3892/etm.2018.6835

Villarruel-López A, López-de la Mora DA, Vázquez-Paulino OD, Puebla-Mora AG, Torres-Vitela MR, Guerrero-Quiroz LA, et al. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement Altern Med. 2018;18:127. https://doi.org/10.1186/s12906-018-2180-2 PMid:29636032 DOI: https://doi.org/10.1186/s12906-018-2180-2

Jahan IA, Hossain MH, Ahmed KS, Sultana Z, Biswas PK, Nada K. Antioxidant activity of Moringa oleifera seed extracts. Orient Pharm Exp Med. 2018;18(4):299-307. https://doi.org/10.1007/s13596-018-0333-y DOI: https://doi.org/10.1007/s13596-018-0333-y

Al-Asmari AK, Albalawi SM, Athar MT, Khan AQ, Al-Shahrani H, Islam M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PloS One. 2015;10:e0135814. https://doi.org/10.1371/journal.pone.0135814 PMid:26288313 DOI: https://doi.org/10.1371/journal.pone.0135814

Xu YB, Chen GL, Guo MQ. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants (Basel). 2019;8:296. https://doi.org/10.3390/antiox8080296 PMid:31404978 DOI: https://doi.org/10.3390/antiox8080296

Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5:e47. PMid:28620474 DOI: https://doi.org/10.1017/jns.2016.41

Nguyen TP, Tran CL, Vuong CH, Do TH, Le TD, Mai DT, et al. Flavonoids with hepatoprotective activity from the leaves of Cleome viscosa L. Nat Prod Res. 2017;31(22):2587-92. https://doi.org/10.1080/14786419.2017.1283497 PMid:28135851 DOI: https://doi.org/10.1080/14786419.2017.1283497

Ekundina VO, Ebeye OA, Oladele AA, Osham GO. Hepatotoxic and nephrotoxic effects of Moringa oleifera leaves extract in adult Wistar rats. J Nat Sci Res. 2015;5(3):110-7.

Kittipongpatana O, Sirithunyalug J. Development of suspending agent from sodium carboxymethyl mungbean starches. Drug Dev Ind Pharm. 2006;32(7):809-20. https://doi.org/10.1080/03639040500529978 PMid:16908418 DOI: https://doi.org/10.1080/03639040500529978

Kittipongpatana OS, Burapadaja S, Kittipongpatana N. Carboxymethyl mungbean starch as a new pharmaceutical gelling agent for topical preparation. Drug Dev Ind Pharm. 2009;35(1):34-42. https://doi.org/10.1080/03639040802144229 PMid:18720150 DOI: https://doi.org/10.1080/03639040802144229

Doye P, Mena T, Das N. Formulation and bio-availability parameters of pharmaceutical suspension. Int J Curr Pharm Res. 2017;9(3):8-14. https://doi.org/10.22159/ijcpr.2017.v9i3.18892 22. Kumar R, Rajarajeshwari N, Swamy VB. Isolation and evaluation of Borassus flabellifer mucilage as a natural suspending agent. Int J Pharmtech Res. 2012;4(4):1614-30.

Ahn JY, Kim JM, Jeong TS, Kim S. A study on the effect of syrup form medicines for children on intraoral pH. J Korean Acad Pediatr Dent. 2007;34(4):590-8.

Patel D, Bertz R, Ren S, Boulton DW, Någård M. A systematic review of gastric acid-reducing agent-mediated drug-drug interactions with orally administered medications. Clin Pharmacokinet. 2020;59(4):447-62. https://doi.org/10.1007/s40262-019-00844-3 PMid:31788764 DOI: https://doi.org/10.1007/s40262-019-00844-3

Wang P, Pradhan K, Zhong X-b, Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B. 2016;6(5):384-92. PMid:27709007 DOI: https://doi.org/10.1016/j.apsb.2016.07.014

Hassan H, Hongli G, Yousef B, Luyong Z, Jiang Z. Hepatotoxicity mechanisms of isoniazid: A mini-review. J Appl Toxicol. 2015;35(12):1427-32. https://doi.org/10.1002/jat.3175 PMid:26095833 DOI: https://doi.org/10.1002/jat.3175

Elvira-Torales LI, García-Alonso J, Periago-Castón MJ. Nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants (Basel). 2019;8(7):229. https://doi.org/10.3390/antiox8070229 PMid:31330977 DOI: https://doi.org/10.3390/antiox8070229

Downloads

Published

2021-04-12

How to Cite

1.
Aristianti A, Nurkhaeri N, Tandiarrang VY, Awaluddin A, Muslimin L. Formulation and Pharmacological Studies of Leaves of Moringa (Moringa oleifera), a Novel Hepatoprotection in Oral Drug Formulations. Open Access Maced J Med Sci [Internet]. 2021 Apr. 12 [cited 2024 Nov. 21];9(A):151-6. Available from: https://oamjms.eu/index.php/mjms/article/view/5839