Enhancement of Chondrogenesis in Hypoxic Precondition Culture: A Systematic Review

Authors

  • Sholahuddin Rhatomy Department of Orthopaedics and Traumatology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Orthopaedics and Traumatology, Sport and Adult Reconstructive Division, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia; Department of Orthopaedics and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
  • Riky Setyawan Department of Orthopaedics and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
  • Michael Aaron Romulo Soeradji Tirtonegoro Sport Center and Research Unit, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.5850

Keywords:

Stem cell, Cartilage, Hypoxic, Oxygen level

Abstract

BACKGROUND: Cartilage tear has begun to be treated with stem cells. However, stem cell oxygen level culture has not been evaluated for the best environment to enhance chondrogenesis.

AIM: The purpose of this review is to focus on the hypoxic oxygen level of stem cells culture as a treatment for cartilage tear.

METHODS: A literature search was systemically conducted on PubMed (MEDLINE), OVID, EMBASE, the Cochrane Library, Scopus, Web of Science, Science Direct, Wiley Online Library, Google Scholar, and bibliography of selected articles with the terms (“culture”) AND (“stem cell” OR “mesenchymal stem cell” OR “MSC”) AND (“hypoxic” OR “hypoxia”) AND (“cartilage” OR “chondro*”) as the main keywords. A total of 438 articles were reviewed. Thirty-six articles were considered relevant for this systematic review.

RESULTS: The result of this review supports stimulation effects of hypoxic oxygen level stem cell culture in chondrogenesis process. Most studies used 5% oxygen concentration for culture, both of in vivo and in vitro studies. Due to the heterogeneity nature of the included studies, meta-analysis was unable to be conducted.

CONCLUSION: Hypoxia state seems to play an important role in chondrocytes proliferation, differentiation, and matrix production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med. 2017;36(3):413-25. https://doi.org/10.1016/j.csm.2017.02.001 PMid:28577703 DOI: https://doi.org/10.1016/j.csm.2017.02.001

Pruksakorn D, Pothachareoun P, Klunklin K, Nimkingratana P, Rohanastein S, Padongkiert S, et al. Articular cartilage injury treatment: History and basic science review. Orthop Muscul Syst. 2012;1(4):1-7. https://doi.org/10.4172/2161-0533.1000114 DOI: https://doi.org/10.4172/2161-0533.1000114

Rodriguez-Merchan EC. Articular Cartilage Defects of the Knee. Berlin, Germany: Springer; 2012. p. 1-113. DOI: https://doi.org/10.1007/978-88-470-2727-5_1

Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, et al. Advances and prospects in stem cells for cartilage regeneration. Stem Cells Int. 2017;2017:4130607. https://doi.org/10.1155/2017/4130607 PMid:28246531 DOI: https://doi.org/10.1155/2017/4130607

Adesida AB, Mulet-Sierra A, Jomha NM. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3(2):9. https://doi.org/10.1186/scrt100 PMid:22385573 DOI: https://doi.org/10.1186/scrt100

Phinney DG, Prockop DJ. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair-current views. Stem Cells. 2007;25(11):2896-902. https://doi.org/10.1634/stemcells.2007-0637 PMid:17901396 DOI: https://doi.org/10.1634/stemcells.2007-0637

Nam Y, Rim YA, Lee J, Ju JH. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int. 2018;2018:8490489. https://doi.org/10.1155/2018/8490489 PMid:29765426 DOI: https://doi.org/10.1155/2018/8490489

Mas-Bargues C, Sanz-Ros J, Román-Domínguez A, Inglés M, Gimeno-Mallench L, El Alami M, et al. Relevance of oxygen concentration in stem cell culture for regenerative medicine. Int J Mol Sci. 2019;20(5):1195. https://doi.org/10.3390/ijms20051195 PMid:30857245 DOI: https://doi.org/10.3390/ijms20051195

Bae HC, Park HJ, Wang SY, Yang HR, Lee MC, Han HS. Hypoxic condition enhances chondrogenesis in synoviumderived mesenchymal stem cells. Biomater Res. 2018;22(1):28. https://doi.org/10.1186/s40824-018-0134-x PMid:30275971 DOI: https://doi.org/10.1186/s40824-018-0134-x

Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB. Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res Ther. 2015;6(1):84. https://doi.org/10.1186/s13287-015-0075-4 PMid:25900045 DOI: https://doi.org/10.1186/s13287-015-0075-4

Huang X, Hou Y, Zhong L, Huang D, Qian H, Karperien M, et al. Promoted chondrogenesis of co-cultured chondrocytes and mesenchymal stem cells under hypoxia using in situ forming degradable hydrogel scaffolds. Biomacromolecules. 2017;19(1):94-102. https://doi.org/10.1021/acs.biomac.7b01271 PMid:29211452 DOI: https://doi.org/10.1021/acs.biomac.7b01271

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009;6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100 PMid:19621070 DOI: https://doi.org/10.1371/journal.pmed.1000100

Whiting P, Savovic J, Higgins JP, Caldwell DM, Reeves BC, Shea B, et al. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016;69:225-34. https://doi.org/10.1016/j.jclinepi.2015.06.005 PMid:26092286 DOI: https://doi.org/10.1016/j.jclinepi.2015.06.005

Gong M, Liang T, Jin S, Dai X, Zhou Z, Gao M, et al. Methylationmediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions. Am J Transl Res. 2017;9(9):4111-24. PMid:28979686

Henrionnet C, Liang G, Roeder E, Dossot M, Wang H, Magdalou J, et al. Hypoxia for mesenchymal stem cell expansion and differentiation: The best way for enhancing TGFß-induced chondrogenesis and preventing calcifications in alginate beads. Tissue Eng Part A. 2017;23(17-18):913-22. https://doi.org/10.1089/ten.tea.2016.0426 PMid:28385113 DOI: https://doi.org/10.1089/ten.tea.2016.0426

Hung SP, Ho JH, Shih YR, Lo T, Lee OK. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res. 2012;30(2):260-6. https://doi.org/10.1002/jor.21517 PMid:21809383 DOI: https://doi.org/10.1002/jor.21517

Kanichai M, Ferguson D, Prendergast PJ, Campbell VA. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia-inducible factor (HIF)-1α. J Cell Physiol. 2008;216(3):708-15. https://doi.org/10.1002/jcp.21446 PMid:18366089 DOI: https://doi.org/10.1002/jcp.21446

Khan WS, Adesida AB, Hardingham TE. Hypoxic conditions increase hypoxia-inducible transcription factor 2α and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Res Ther. 2007;9(3):R55. https://doi.org/10.1186/ar2211 PMid:17537234 DOI: https://doi.org/10.1186/ar2211

Khan WS, Adesida AB, Tew SR, Lowe ET, Hardingham TE. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res. 2010;28(6):834-40. https://doi.org/10.1002/jor.21043 PMid:20058274 DOI: https://doi.org/10.1002/jor.21043

Kishimoto KN, Oxford CL, Reddi AH. Stimulation of the side population fraction of ATDC5 chondroprogenitors by hypoxia. Cell Biol Int. 2009;33(12):1222-9. https://doi.org/10.1016/j.cellbi.2009.06.009 PMid:19524690 DOI: https://doi.org/10.1016/j.cellbi.2009.06.009

Lee HH, Chang CC, Shieh MJ, Wang JP, Chen YT, Young TH, et al. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci Rep. 2013;3:2683. https://doi.org/10.1038/srep02683 PMid:24042188 DOI: https://doi.org/10.1038/srep02683

Lee J, Byeon JS, Lee KS, Gu NY, Lee GB, Kim HR, et al. Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells. Vet Res Commun. 2016;40(1):1-10. https://doi.org/10.1007/s11259-015-9647-0 PMid:26661466 DOI: https://doi.org/10.1007/s11259-015-9647-0

Mahyudin F, Utomo DN, Martanto TW, Hidayat AR, Putri LM. Effect of decellularized cartilage bovine scaffold and hypoxic condition on stem cell differentiation to chondrocyte: An in vitro study. J Biomim Biomater Biomed Eng. 2018;35:67-76. https://doi.org/10.4028/www.scientific.net/jbbbe.35.67 DOI: https://doi.org/10.4028/www.scientific.net/JBBBE.35.67

Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 2010;19(1):29-42. https://doi.org/10.3727/096368909x478560 PMid:19878627 DOI: https://doi.org/10.3727/096368909X478560

Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol. 2010;298(2):355-64. https://doi.org/10.1152/ajpcell.00398.2009 PMid:19940068 DOI: https://doi.org/10.1152/ajpcell.00398.2009

Meretoja VV, Dahlin RL, Wright S, Kasper FK, Mikos AG. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials. 2013;34(17):4266-73. https://doi.org/10.1016/j.biomaterials.2013.02.064 PMid:23489925 DOI: https://doi.org/10.1016/j.biomaterials.2013.02.064

Munir S, Foldager CB, Lind M, Zachar V, Søballe K, Koch TG. Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res. 2014;355(1):89-102. https://doi.org/10.1007/s00441-013-1732-5 PMid:24178804 DOI: https://doi.org/10.1007/s00441-013-1732-5

Portron S, Merceron C, Gauthier O, Lesoeur J, Sourice S, Masson M, et al. Effects of in vitro low oxygen tension preconditioning of adipose stromal cells on their in vivo chondrogenic potential: Application in cartilage tissue repair. PLoS One. 2013;8(4):e62368. https://doi.org/10.1371/journal.pone.0062368 PMid:23638053 DOI: https://doi.org/10.1371/journal.pone.0062368

Ranera B, Remacha AR, Álvarez-Arguedas S, Castiella T, Vázquez FJ, Romero A, et al. Expansion under hypoxic conditions enhances the chondrogenic potential of equine bone marrow-derived mesenchymal stem cells. Vet J. 2013;195(2):248-51. https://doi.org/10.1016/j.tvjl.2012.06.008 PMid:22771146 DOI: https://doi.org/10.1016/j.tvjl.2012.06.008

Silva JC, Han X, Silva TP, Xia K, Mikael PE, Cabral JMS, et al. Glycosaminoglycan remodeling during chondrogenic differentiation of human bone marrow-/synovial-derived mesenchymal stem/stromal cells under normoxia and hypoxia. Glycoconj J. 2020;37(3):345-60. https://doi.org/10.1007/s10719-020-09911-5 PMid:32086666 DOI: https://doi.org/10.1007/s10719-020-09911-5

Tian HT, Zhang B, Tian Q, Liu Y, Yang SH, Shao ZW. Construction of self-assembled cartilage tissue from bone marrow mesenchymal stem cells induced by hypoxia combined with GDF-5. J Huazhong Univ Sci Technolog Med Sci. 2013;33(5):700-6. https://doi.org/10.1007/s11596-013-1183-y PMid:24142723 DOI: https://doi.org/10.1007/s11596-013-1183-y

Wan Safwani WK, Choi JR, Yong KW, Ting I, Mat Adenan NA, Pingguan-Murphy B. Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adiposederived stem cells. Cryobiology. 2017;75:91-9. https://doi.org/10.1016/j.cryobiol.2017.01.006 PMid:28108309 DOI: https://doi.org/10.1016/j.cryobiol.2017.01.006

Xu Y, Malladi P, Chiou M, Bekerman E, Giaccia AJ, Longaker MT. In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Eng. 2007;13(12):2981-93. https://doi.org/10.1089/ten.2007.0050 PMid:17916040 DOI: https://doi.org/10.1089/ten.2007.0050

Koay EJ, Athanasiou KA. Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthritis Cartilage. 2008;16(12):1450-6. https://doi.org/10.1016/j.joca.2008.04.007 PMid:18541445 DOI: https://doi.org/10.1016/j.joca.2008.04.007

Cicione C, Muiños-López E, Hermida-Gómez T, Fuentes- Boquete I, Díaz-Prado S, Blanco FJ. Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int. 2013;2013:232896. https://doi.org/10.1155/2013/232896 PMid:24082888 DOI: https://doi.org/10.1155/2013/232896

Duval E, Baugé C, Andriamanalijaona R, Bénateau H, Leclercq S, Dutoit S, et al. Molecular mechanism of hypoxiainduced chondrogenesis and its application in in vivo cartilage tissue engineering. Biomaterials. 2012;33(26):6042-51. https://doi.org/10.1016/j.biomaterials.2012.04.061 PMid:22677190 DOI: https://doi.org/10.1016/j.biomaterials.2012.04.061

Felka T, Schäfer R, Schewe B, Benz K, Aicher WK. Hypoxia reduces the inhibitory effect of IL-1beta on chondrogenic differentiation of FCS-free expanded MSC. Osteoarthritis Cartilage. 2009;17(10):1368-76. https://doi.org/10.1016/j.joca.2009.04.023 PMid:19463979 DOI: https://doi.org/10.1016/j.joca.2009.04.023

Gale AL, Mammone RM, Dodson ME, Linardi RL, Ortved KF. The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. BMC Vet Res. 2019;15(1):201. https://doi.org/10.1186/s12917-019-1954-1 PMid:31200719 DOI: https://doi.org/10.1186/s12917-019-1954-1

Galeano-Garces C, Camilleri ET, Riester SM, Dudakovic A, Larson DR, Qu W, et al. Molecular validation of chondrogenic differentiation and hypoxia responsiveness of platelet-lysate expanded adipose tissue–derived human mesenchymal stromal cells. Cartilage. 2016;8(3):283-99. https://doi.org/10.1177/1947603516659344 PMid:28618870 DOI: https://doi.org/10.1177/1947603516659344

Gómez-Leduc T, Desancé M, Hervieu M, Legendre F, Ollitrault D, de Vienne C, et al. Hypoxia is a critical parameter for chondrogenic differentiation of human umbilical cord blood mesenchymal stem cells in Type I/III collagen sponges. Int J Mol Sci. 2017;18(9):1933. https://doi.org/10.3390/ijms18091933 PMid:28885597 DOI: https://doi.org/10.3390/ijms18091933

Kalpakci KN, Brown WE, Hu JC, Athanasiou KA. Cartilage tissue engineering using dermis isolated adult stem cells: The use of hypoxia during expansion versus chondrogenic differentiation. PLoS One. 2014;9(5):e98570. https://doi.org/10.1371/journal.pone.0098570 PMid:24867063 DOI: https://doi.org/10.1371/journal.pone.0098570

Yodmuang S, Marolt D, Marcos-Campos I, Gadjanski I, Vunjak-Novakovic G. Synergistic effects of hypoxia and morphogenetic factors on early chondrogenic commitment of human embryonic stem cells in embryoid body culture. Stem Cell Rev Rep. 2015;11(2):228-41. https://doi.org/10.1007/s12015-015-9584-x PMid:25618295 DOI: https://doi.org/10.1007/s12015-015-9584-x

Ohara T, Muneta T, Nakagawa Y, Matsukura Y, Ichinose S, Koga H, et al. Hypoxia enhances proliferation through increase of colony formation rate with chondrogenic potential in primary synovial mesenchymal stem cells. J Med Dent Sci. 2016;63(4):61-70. PMid:28049938

Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, et al. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res. 2003;21(3):451-7. https://doi.org/10.1016/s0736-0266(02)00230-9 PMid:12706017 DOI: https://doi.org/10.1016/S0736-0266(02)00230-9

Downloads

Published

2021-10-16

How to Cite

1.
Rhatomy S, Setyawan R, Romulo MA. Enhancement of Chondrogenesis in Hypoxic Precondition Culture: A Systematic Review. Open Access Maced J Med Sci [Internet]. 2021 Oct. 16 [cited 2024 Nov. 21];9(F):492-504. Available from: https://oamjms.eu/index.php/mjms/article/view/5850

Issue

Section

Systematic Review Article

Categories