Comparing Impact of Two Resin Infiltration Systems on Microhardness of Demineralized Human Enamel after Exposure to Acidic Challenge

Authors

  • Ebaa Alagha Restorative Department, Faculty of Dentistry, Alfarabi Private Colleges, Jeddah, Saudi Arabia
  • Mustafa Ibrahim Alagha Restorative Department, School of Dentistry, University of Liverpool, Liverpool, United Kingdom

DOI:

https://doi.org/10.3889/oamjms.2021.5878

Keywords:

Icon resin infiltration system, Microhardness, White spot lesion, Single bond universal adhesive system

Abstract

AIM: This study compared the impact of two resin infiltration systems on microhardness of demineralized enamel before and after an acidic challenge.

MATERIALS AND METHODS: A total of forty human maxillary molar teeth were used in this study. Each tooth has 4 groups (four standardized windows onto each tooth). Group A1: Untreated sound enamel surface (positive control), Group A2: Artificially demineralized enamel surface (negative control), Group A3: Icon resin infiltrating to demineralized enamel, while Group A4: Single bond universal adhesive applied to the demineralized enamel surface. All teeth were immersed in a demineralizing solution. The groups (A3 and A4) were further subdivided into two subgroups according to acidic ethanol challenge Subgroup B1: Specimens tested before an acidic challenge and B2: Specimens tested after an acidic challenge. Vickers microhardness test was done for all groups. One-way analysis of variance (ANOVA) was used to study the difference between tested groups on mean microhardness within each group. Tukey’s post-hoc test was used for pair-wise comparison between the means when ANOVA test was performed, and the significance level was set at p ≤ 0.05.

RESULTS: Icon resin infiltration and single bond universal adhesive showed significantly higher mean microhardness than negative control, but significantly lower mean microhardness than positive control. However, insignificant difference was found between icon and single bond universal adhesive. After the acidic challenge, icon resin infiltration showed significantly higher mean microhardness than negative control. However, single bond universal adhesive showed insignificant difference as compared to the negative control.

CONCLUSION: After an acidic challenge, icon resin infiltration was more successful than single bond universal total-etch adhesive system in microhardness.

RECOMMENDATION: Icon resin infiltration technique is a promising, noninvasive approach that prevents the progress of the carious lesion.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Alhamed M, Almalki F, Alselami A, Alotaibi T, Elkwatehy W. Effect of different remineralizing agents on the initial carious lesions a comparative study. Saudi Dent J. 2019;32(8):390-5. https://doi.org/10.1016/j.sdentj.2019.11.001 PMid:33304082

Taher M, Alkhamis A, Dowaidi M. The influence of resin infiltration system on enamel microhardness and surface roughness: An in vitro study. Saudi Dent J. 2012;24(2):79-84. https://doi.org/10.1016/j.sdentj.2011.10.003 PMid:23960533

Cochrane N, Cai F, Huq N, Burrow M, Reynolds E. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):87-97. https://doi.org/10.1177/0022034510376046 PMid:20739698

Wu L, Geng K, Gao O. Effects of different anti-caries agents on microhardness and superficial microstructure of irradiated permanent dentin: An in vitro study. BMC Oral Health. 2019;14(19):113. https://doi.org/10.1186/s12903-019-0815-4

Bagde C. ICON in minimally invasive dentistry. Acta Sci Dent Sci. 2020;4:62-70.

Mueller J, Meyer-Lueckel H, Paris S, Hopfenmuller W, Kielbassa M. Inhibition of lesion progression by the penetration of resins in vitro: Influence of the application procedure. Oper Dent. 2006;31(3):338-45. https://doi.org/10.2341/05-39 PMid:16802642

Paris S, Meyer-Lueckel H. Inhibition of caries progression by resin infiltration in situ. Caries Res. 2010;44(1):47-54. https://doi.org/10.1159/000275917 PMid:20090328

Paris S, Hopfenmuller W, Meyer-Lueckel H. Resin infiltration of caries lesions: An efficacy randomized trial. J Dent Res. 2010;89(8):823-6. https://doi.org/10.1177/0022034510369289 PMid:20505049

Titley K, Chernecky R, Rossouw P, Kulkarni G. The effect of various storage methods and media on shear-bond strengths of dental composite resin to bovine dentine. Arch Oral Biol. 1998;43(4):305-11. https://doi.org/10.1016/s0003-9969(97)00112-x PMid:9839706

Lata S, Varghese N, Varughese J. Remineralization potential of fluoride and amorphous calcium phosphate-casein phosphor peptide on enamel lesions: An in vitro comparative evaluation. J Conserv Dent. 2010;13(1):42-6. https://doi.org/10.4103/0972-0707.62634 PMid:20582219

Yadav P, Desai H, Patel K, Patel N, Iyengar S. A comparative quantitative and qualitative assessment in orthodontic treatment of white spot lesion treated with 3 different commercially available materials in vitro study. J Clin Exp Dent. 2019;11(9):776-82. https://doi.org/10.4317/jced.56044 PMid:31636868

Rao A, Malhotra N. The role of remineralizing agents in dentistry: A review. Compend Contin Educ Dent. 2011;32(6):26-33. PMid:21894873

Kamath P, Nayak R, KamathS, Pai D. A comparative evaluation of the remineralization potential of three commercially available remineralizing agents on white spot lesions in primary teeth: An in vitro study. J Ind Soci Pedo and Prev Dent. 2017;35(3):229- 37. https://doi.org/10.4103/jisppd.jisppd_242_16 PMid:28762349

Paris S, Meyer-Lueckel H, Kielbassa M. Resin infiltration of natural caries lesions. J Dent Res. 2007;86(7):662-6. https://doi.org/10.1177/154405910708600715 PMid:17586715

Mandava J, Reddy S, Kantheti S, Chalasani U, Chandra R, Borugadda R, et al. Microhardness and penetration of artificial white spot lesions treated with resin or colloidal silica infiltration. J Clin Diagn Res. 2017;11(4):ZC142-6. https://doi.org/10.7860/ jcdr/2017/25512.9706 PMid:28571282

Featherstone J, Ten Cate J, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385-91. https://doi.org/10.1159/000260692 PMid:6577953

Herkstroter F, Witjes M, Ruben J, Arends J. Time dependency of microhardness indentations in human and bovine dentine compared with human enamel. Caries Res. 1989;23(5):342-44. https://doi.org/10.1159/000261203 PMid:2766320

Meyer-Lueckel H, Paris S, Kielbass M. Surface layer erosion of natural caries lesions with phosphoric and hydrochloric acid gels in preparation for resin infiltration. Caries Res. 2007;41(3):223-30. https://doi.org/10.1159/000099323 PMid:17426404

Manoharan V, Kumar A, Aru S, Anand V, Krishnamoorthy S, Methippara J. Is resin infiltration a microinvasive approach to white lesions of calcified tooth structures? A systemic review. Int J Clin Pediatr Dent. 2019;12(1):53-8. https://doi.org/10.5005/jp-journals-10005-1579 PMid:31496574

Pashley D, Tay F, Carvalho R, Rueggeberg F, Agee K, Carrilho M, et al. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am J Dent. 2007;20(1):7-21. https://doi.org/10.1177/0022034510363380 PMid:17380802

El-zankalouny S, Abd El Fattah W, El-Shabrawy S. Penetration depth and enamel microhardness of resin infiltrant and traditional techniques for treatment of artificaila enamel lesions. Alex Dent J. 2016;41:20-5. https://doi.org/10.21608/adjalexu.2016.59167

Meyer-Lueckel H, Paris S. Infiltration of natural caries lesions with experimental resins differing in penetration coefficients and ethanol addition. Caries Res. 2010;44(4):408-14. https://doi.org/10.1159/000318223 PMid:20714153

Gray GB, Shellis P. Infiltration of resin into white spot caries like lesions of enamel: An in vitro study. Eur J Pros Rest Dent. 2002;10(1):27-32. PMid:12051129

Subramaniam P, Girish B, Lakhotia D. Evaluation of penetration depth of a commercially available resin infiltrate into artificially created enamel lesions. J Conserv Dent. 2014;17(2):146-9. https://doi.org/10.4103/0972-0707.128054 PMid:24778511

Van Landuyt K, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):3757-85. https://doi.org/10.1016/j.biomaterials.2007.04.044 PMid:17543382

Paris S, Meyer-Lueckel H, Mueller J, Hummel M, Kielbassa M. Progression of sealed initial bovine enamel lesions under demineralizing conditions in vitro. Caries Res. 2006;40(2):124- 9. https://doi.org/10.1159/000091058 PMid:16508269

Downloads

Published

2021-05-14

How to Cite

1.
Alagha E, Alagha MI. Comparing Impact of Two Resin Infiltration Systems on Microhardness of Demineralized Human Enamel after Exposure to Acidic Challenge. Open Access Maced J Med Sci [Internet]. 2021 May 14 [cited 2021 Dec. 4];9(D):92-7. Available from: https://oamjms.eu/index.php/mjms/article/view/5878

Issue

Section

Prosthodontics

Categories