The Comparison of 25-Hydroxyvitamin D3 between Patients With and Without Cervical Cancer

Authors

  • Dodi Suardi Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Feny Renita Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Andi Kurniadi Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia https://orcid.org/0000-0003-0731-3512
  • Akhmad Yogi Pramatirta Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Raden Tina Dewi Judistiani Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia https://orcid.org/0000-0002-3265-0708
  • Yudi Mulyana Hidayat Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
  • Budi Setiabudiawan Department of Pediatric, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia https://orcid.org/0000-0002-4842-2451

DOI:

https://doi.org/10.3889/oamjms.2021.5901

Keywords:

Cervical cancer, Vitamin D, 25-Hydroxyvitamin D3

Abstract

BACKGROUND: Vitamin D was currently believed to have effects on numerous cancer pathogenic processes.

AIM: This study was to assess the correlation of Vitamin D serum level in women with carcinoma cervix and also evaluate the effect of carcinoma cervix on the Vitamin D serum.

METHODS: This was an observational with a cross-sectional study. Participants were women with cervical cancer who have not received any treatment, presented to the Oncology Clinic of the Obstetrics and Gynecology Department of Dr. Hasan Sadikin General Hospital, and women without cervical cancer. The level of Vitamin D3 was analyzed in the Serology Laboratory of Clinical Pathology Department of Dr. Hasan Sadikin General Hospital.

RESULTS: There were 113 participants consisted of 58 women with cervical cancer and 55 healthy women. Mean levels of Vitamin D3 were significantly lower in cervical cancer group than non-cervical cancer group (26.74 ± 13.166 vs. 32.16±14.86, p = 0.022).

CONCLUSION: The level of Vitamin D3 was found to be significantly higher in the non-cervical cancer group than cervical cancer group.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Gonzalez-Martin A, Marth C, Landoni F, McCormack M, Colombo N, Mahner S, et al. Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(4):262. https://doi.org/10.1093/annonc/mdy160 PMid:29741577 DOI: https://doi.org/10.1093/annonc/mdy160

Andrijono, Purwoto G, Sekarutami SM. Pedoman Pelayanan Klinis Kanker Serviks. Indonesia: Kemenkes RI; 2015. p. 36.

Vahedpoor Z, Jamilian M, Bahmani F, Aghadavod E, Karamali M, Kashanian M, et al. Effects of long-term Vitamin D supplementation on regression and metabolic status of cervical intraepithelial neoplasia: A randomized, double-blind, placebo-controlled trial. Horm Cancer. 2017;8(1):58-67. https://doi.org/10.1007/s12672-016-0278-x PMid:28050798 DOI: https://doi.org/10.1007/s12672-016-0278-x

Merchan BB, Morcillo S, Martin-Nunez G, Tinahones FJ, Macias-Gonzalez M. The role of Vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol. 2017;167:203-18. https://doi.org/10.1016/j.jsbmb.2016.11.020 PMid:27913313 DOI: https://doi.org/10.1016/j.jsbmb.2016.11.020

Serrano D, Gnagnarella P, Raimondi S, Gandini S. Meta-analysis on Vitamin D receptor and cancer risk: Focus on the role of TaqI, ApaI, and Cdx2 polymorphisms. Eur J Cancer Prev. 2016;25(1):85-96. https://doi.org/10.1097/cej.0000000000000132 PMid:25738688 DOI: https://doi.org/10.1097/CEJ.0000000000000132

De Haes P, Garmyn M, Degreef H, Vantieghem K, Bouillon R, Segaert S. 1,25-Dihydroxyvitamin D3 inhibits ultraviolet B-induced apoptosis, Jun kinase activation, and interleukin-6 production in primary human keratinocytes. J Cell Biochem. 2003;89(4):663-73. https://doi.org/10.1002/jcb.10540 PMid:12858333 DOI: https://doi.org/10.1002/jcb.10540

Welsh J. Cellular and molecular effects of Vitamin D on carcinogenesis. Arch Biochem Biophys. 2012;523(1):107-14. PMid:22085499 DOI: https://doi.org/10.1016/j.abb.2011.10.019

Bao BY, Yao J, Lee YF. 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis. 2006;27(9):1883-93. https://doi.org/10.1093/carcin/bgl041 PMid:16624828 DOI: https://doi.org/10.1093/carcin/bgl041

Vaughan-Shaw PG, Buijs LF, Blackmur JP, Theodoratou E, Zgaga L, Din FV, et al. The effect of Vitamin D supplementation on survival in patients with colorectal cancer: Systematic review and meta-analysis of randomised controlled trials. Br J Cancer. 2020;123(11):1705-12. https://doi.org/10.1038/s41416-020-01060-8 PMid:32929196 DOI: https://doi.org/10.1038/s41416-020-01060-8

Trump DL, Aragon-Ching JB. Vitamin D in prostate cancer. Asian J Androl. 2018;20(3):244. https://doi.org/10.4103/aja.aja_14_18 PMid:29667615 DOI: https://doi.org/10.4103/aja.aja_14_18

Estébanez N, Gómez-Acebo I, Palazuelos C, Llorca J, Dierssen-Sotos T. Vitamin D exposure and risk of breast cancer: A meta-analysis. Sci Rep. 2018;8(1):1-13. https://doi.org/10.1038/s41598-018-27297-1 DOI: https://doi.org/10.1038/s41598-018-27297-1

Agic A, Xu H, Altgassen C, Noack F, Wolfler MM, Diedrich K, et al. Relative expression of 1,25-dihydroxyvitamin D3 receptor, Vitamin D 1 alpha-hydroxylase, Vitamin D 24-hydroxylase, and Vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod Sci. 2007;14(5):486-97. https://doi.org/10.1177/1933719107304565 PMid:17913968 DOI: https://doi.org/10.1177/1933719107304565

Friedrich M, Rafi L, Mitschele T, Tilgen W, Schmidt W, Reichrath J. Analysis of the Vitamin D system in cervical carcinomas, breast cancer and ovarian cancer. Recent Results Cancer Res. 2003;164:239-46. https://doi.org/10.1007/978-3-642-55580-0_17 PMid:12899526 DOI: https://doi.org/10.1007/978-3-642-55580-0_17

Hosono S, Matsuo K, Kajiyama H, Hirose K, Suzuki T, Kawase T, et al. Association between dietary calcium and vitamin D intake and cervical carcinogenesis among Japanese women. Eur J Clin Nutr. 2010;64(4):400-9. https://doi.org/10.1038/ejcn.2010.28 PMid:20197786 DOI: https://doi.org/10.1038/ejcn.2010.28

Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am J Clin Nutr. 2007;85(6):1586-91. https://doi.org/10.1093/ajcn/85.6.1586 PMid:17556697 DOI: https://doi.org/10.1093/ajcn/85.6.1586

Mamede AC, Tavares SD, Abrantes AM, Trindade J, Maia JM, Botelho MF. The Role of vitamins in cancer: A review. Nutr Cancer. 2011;63(4):479-94. https://doi.org/10.1080/01635581.2011.539315 PMid:21541902 DOI: https://doi.org/10.1080/01635581.2011.539315

Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis. 2009;30(7):1073-81. https://doi.org/10.1093/carcin/bgp127 PMid:19468060 DOI: https://doi.org/10.1093/carcin/bgp127

Narvaez CJ, Matthews D, LaPorta E, Simmons KM, Beaudin S, Welsh J. The impact of Vitamin D in breast cancer: Genomics, pathways, metabolism. Front Physiol. 2014;5:213. https://doi.org/10.3389/fphys.2014.00213 PMid:24982636 DOI: https://doi.org/10.3389/fphys.2014.00213

Guzey M, Luo JH, Getzenberg R. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. J Cell Biochem. 2004;93(2):271-85. https://doi.org/10.1002/jcb.20182 PMid:15368355 DOI: https://doi.org/10.1002/jcb.20182

Chung I, Han G, Seshadri M, Gillard BM, Yu WD, Foster BA, et al. Role of Vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo. Cancer Res. 2009;69(3):967-75. https://doi.org/10.1158/0008-5472.can-08-2307 PMid:19141646 DOI: https://doi.org/10.1158/0008-5472.CAN-08-2307

Köstner K, Denzer N, Mueller CS, Klein R, Tilgen W, Reichrath J. The relevance of Vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res. 2009;29(9):3511-36. PMid:19667145

Kishimoto M, Fujiki R, Takezawa S, Sasaki Y, Nakamura T, Yamaoka K, et al. Nuclear receptor mediated gene regulation through chromatin remodeling and histone modifications. Endocr J. 2006;53(2):157-72. https://doi.org/10.1507/endocrj.53.157 PMid:16618973 DOI: https://doi.org/10.1507/endocrj.53.157

Jensen SS, Madsen MW, Lukas J, Binderup L, Bartek J. Inhibitory effects of 1α,25-dihydroxyvitamin D3 on the G1-S phase-controlling machinery. Mol Endocrinol. 2001;15(8):1370-80. https://doi.org/10.1210/mend.15.8.0673 PMid:11463860 DOI: https://doi.org/10.1210/mend.15.8.0673

Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ. 1α,25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther. 2007;6(4):1433-9. https://doi.org/10.1158/1535-7163.mct-06-0677 PMid:17431122 DOI: https://doi.org/10.1158/1535-7163.MCT-06-0677

Downloads

Published

2021-07-29

How to Cite

1.
Suardi D, Renita F, Kurniadi A, Pramatirta AY, Judistiani RTD, Hidayat YM, Setiabudiawan B. The Comparison of 25-Hydroxyvitamin D3 between Patients With and Without Cervical Cancer. Open Access Maced J Med Sci [Internet]. 2021 Jul. 29 [cited 2024 Apr. 18];9(B):564-8. Available from: https://oamjms.eu/index.php/mjms/article/view/5901

Most read articles by the same author(s)