Cardiac Biomarkers in hypertensive disorders of pregnancy
DOI:
https://doi.org/10.3889/oamjms.2021.5913Keywords:
Biomarkers, Preeclampsia, Gestational hypertension, Cardiovascular risk, Natriuretic peptides, Troponin, Growth/differentiation factor 15, Suppression of tumorigenicity-2, Galectin-3Abstract
In recent years, biomarkers have taken a central place in the assessment of cardiovascular diseases – from prediction to management and prognosis. On the other hand, enough evidence exists to assume that hypertensive disorders of pregnancy share a certain connection with cardiovascular diseases – from common risk factors and underlying mechanisms to the presence of a higher risk for women for the development of a great number of cardiovascular diseases, such as arterial hypertension, coronary atherosclerosis, stroke, peripheral artery disease, venous thromboembolism, and even a higher cardiovascular mortality. The key to a better understanding of the unfavorable cardiovascular profile of women with a hypertensive disorder of pregnancy may lie in their assessment with biomarkers, typically used in the field of cardiology. In this review, we have included studies investigating the use of cardiovascular biomarkers during or after a hypertensive pregnancy, namely, natriuretic peptides, high-sensitivity cardiac troponins, growth/differentiation factor 15 (GDF15), soluble suppression of tumorigenicity-2 (sST2), and galectin-3.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Eurostat. Cardiovascular Diseases; 2020. Available from: https://www.ec.europa.eu/eurostat/statistics-explained/index.php/cardiovascular_diseases_statistics#deaths_from_cardiovascular_diseases. [Last accessed on 2021 Feb 04]
Lo JO, Mission JF, Caughey AB. Hypertensive disease of pregnancy and maternal mortality. Curr Opin Obstet Gynecol. 2013;25(2):124-32. PMid:23403779 DOI: https://doi.org/10.1097/GCO.0b013e32835e0ef5
Roberts JM, Hubel CA. The two stage model of preeclampsia: Variations on the theme. Placenta. 2009;30 Suppl A:S32-7. https://doi.org/10.1016/j.placenta.2008.11.009 PMid:19070896 DOI: https://doi.org/10.1016/j.placenta.2008.11.009
Pankiewicz K, Szczerba E, Maciejewski T, Fijałkowska A. Nonobstetric complications in preeclampsia. Prz Menopauzalny. 2019;18(2):99-109. https://doi.org/10.5114/pm.2019.85785 PMid:31485207 DOI: https://doi.org/10.5114/pm.2019.85785
Khalil G, Hameed A. Preeclampsia: Pathophysiology and the maternal-fetal risk. J Hypertens Manag. 2017;3:024. DOI: https://doi.org/10.23937/2474-3690/1510024
Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and Type 2 diabetes mellitus in the mother. Hypertension. 2009;53(6):944-51. https://doi.org/10.1161/hypertensionaha.109.130765 PMid:19433776 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.109.130765
Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future cardiovascular health: A systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497. https://doi.org/10.1161/circoutcomes.116.003497 PMid:28228456 DOI: https://doi.org/10.1161/CIRCOUTCOMES.116.003497
Theilen LH, Fraser A, Hollingshaus MS, Schliep KC, Varner MW, Smith KR, et al. All-cause and cause-specific mortality after hypertensive disease of pregnancy. Obstet Gynecol. 2016;128(2):238-44. https://doi.org/10.1097/aog.0000000000001534 PMid:27400006 DOI: https://doi.org/10.1097/AOG.0000000000001534
Craici I, Wagner S, Garovic VD. Preeclampsia and future cardiovascular risk: Formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008;2(4):249-59. https://doi.org/10.1177/1753944708094227 PMid:19124425 DOI: https://doi.org/10.1177/1753944708094227
Choi SK, Shin JC, Park YG, Park IY, Kwon JY, Ko HS, et al. The efficacy of peripartum transthoracic echocardiography in women with preeclampsia. Pregnancy Hypertens. 2017;10:187‑91. https://doi.org/10.1016/j.preghy.2017.05.002 PMid:29153677 DOI: https://doi.org/10.1016/j.preghy.2017.05.002
Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: A lesson in integrative physiology. Acta Physiol (Oxf). 2013;208(3):224-33. https://doi.org/10.1111/apha.12106 PMid:23590594 DOI: https://doi.org/10.1111/apha.12106
Fenton M, Burch M. Understanding chronic heart failure. Arch Dis Child. 2007;92(9):812-6. PMid:17715446 DOI: https://doi.org/10.1136/adc.2005.086397
Sánchez-Aranguren LC, Prada CE, Riaño-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: Role of oxidative stress. Front Physiol. 2014;5:372. https://doi.org/10.3389/fphys.2014.00372 PMid:25346691 DOI: https://doi.org/10.3389/fphys.2014.00372
Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW Jr., Wallace K, et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond). 2016;130(6):409-19. https://doi.org/10.1042/cs20150702 PMid:26846579 DOI: https://doi.org/10.1042/CS20150702
Koenig W. Low-grade inflammation modifies cardiovascular risk even at very low LDL-C levels: Are we aiming for a dual target concept? Circulation. 2018;138(2):150-3. https://doi.org/10.1161/circulationaha.118.035107 PMid:29986958 DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.035107
Wojcik-Baszko D, Charkiewicz K, Laudanski P. Role of dyslipidemia in preeclampsia-a review of lipidomic analysis of blood, placenta, syncytiotrophoblast microvesicles and umbilical cord artery from women with preeclampsia. Prostaglandins Other Lipid Mediat. 2018;139:19-23. https://doi.org/10.1016/j.prostaglandins.2018.09.006 PMid:30248406 DOI: https://doi.org/10.1016/j.prostaglandins.2018.09.006
Hauth JC, Clifton RG, Roberts JM, Myatt L, Spong CY, Leveno KJ, et al. Maternal insulin resistance and preeclampsia. Am J Obstet Gynecol. 2011;204(4):327.e1-6. PMid:21458622 DOI: https://doi.org/10.1016/j.ajog.2011.02.024
English FA, Kenny LC, McCarthy FP. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015;8:7-12. PMid:25767405 DOI: https://doi.org/10.2147/IBPC.S50641
Cao Z, Jia Y, Zhu B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int J Mol Sci. 2019;20(8):1820. https://doi.org/10.3390/ijms20081820 PMid:31013779 DOI: https://doi.org/10.3390/ijms20081820
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr., Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart failure society of America. Circulation. 2017;136(6):e137-61. https://doi.org/10.1161/cir.0000000000000460 PMid:28455343 DOI: https://doi.org/10.1161/CIR.0000000000000460
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC) developed with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-200. https://doi.org/10.3410/f.718489795.793497182 PMid:27206819 DOI: https://doi.org/10.3410/f.718489795.793497182
Salah K, Stienen S, Pinto YM, Eurlings LW, Metra M, Bayes-Genis A, et al. Prognosis and NT-proBNP in heart failure patients with preserved versus reduced ejection fraction. Heart. 2019;105(15):1182-9. https://doi.org/10.1136/heartjnl-2018-314173 PMid:30962192 DOI: https://doi.org/10.1136/heartjnl-2018-314173
Palazzuoli A, Beltrami M, Ruocco G, Franci B, Campagna MS, Nuti R. Diagnostic utility of contemporary echo and BNP assessment in patients with acute heart failure during early hospitalization. Eur J Intern Med. 2016;30:43-8. https://doi.org/10.1016/j.ejim.2015.11.031 PMid:26718066 DOI: https://doi.org/10.1016/j.ejim.2015.11.031
Karakiliç E, Kepez A, Abali G, Coşkun F, Kunt M, Tokgözoğlu L. The relationship between B-type natriuretic peptide levels and echocardiographic parameters in patients with heart failure admitted to the emergency department. Anadolu Kardiyol Derg. 2010;10(2):143-9. https://doi.org/10.5152/akd.2010.040 PMid:20382614 DOI: https://doi.org/10.5152/akd.2010.040
Tschöpe C, Kasner M, Westermann D, Gaub R, Poller WC, Schultheiss HP. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: Correlation with echocardiographic and invasive measurements. Eur Heart J. 2005;26(21):2277-84. https://doi.org/10.1093/eurheartj/ehi406 PMid:16014646 DOI: https://doi.org/10.1093/eurheartj/ehi406
Afshani N, Moustaqim-Barrette A, Biccard BM, Rodseth RN, Dyer RA. Utility of B-type natriuretic peptides in preeclampsia: A systematic review. Int J Obstet Anesth. 2013;22(2):96-103. https://doi.org/10.1016/j.ijoa.2012.11.001 PMid:23462297 DOI: https://doi.org/10.1016/j.ijoa.2012.11.001
Alma LJ, Bokslag A, Maas AH, Franx A, Paulus WJ, de Groot CJ. Shared biomarkers between female diastolic heart failure and pre-eclampsia: A systematic review and meta-analysis. ESC Heart Fail. 2017;4(2):88-98. https://doi.org/10.1002/ehf2.12129 PMid:28451444 DOI: https://doi.org/10.1002/ehf2.12129
Szabó G, Molvarec A, Nagy B, Rigó J Jr. Increased B-type natriuretic peptide levels in early-onset versus late-onset preeclampsia. Clin Chem Lab Med. 2014;52(2):281-8. https://doi.org/10.1515/cclm-2013-0307 PMid:23979127 DOI: https://doi.org/10.1515/cclm-2013-0307
Fayers S, Moodley J, Naidoo DP. Cardiovascular haemodynamics in pre-eclampsia using brain naturetic peptide and tissue Doppler studies. Cardiovasc J Afr. 2013;24(4):130-6. https://doi.org/10.5830/cvja-2013-023 PMid:24217044 DOI: https://doi.org/10.5830/CVJA-2013-023
Ghomian N, Vakilian F, Shahri B, Rostaminejad V, Khadem-Rezaiyan M. Can brain natriuretic peptide predict cardiovascular complications in severe preeclampsia? A case-control study. Int J Reprod Biomed. 2019;17(4):271-8. https://doi.org/10.18502/ijrm.v17i4.4552 PMid:31435608 DOI: https://doi.org/10.18502/ijrm.v17i4.4552
Tihtonen KM, Kööbi T, Vuolteenaho O, Huhtala HS, Uotila JT. Natriuretic peptides and hemodynamics in preeclampsia. Am J Obstet Gynecol. 2007;196(4):328.e1-7. https://doi.org/10.1016/j.ajog.2006.11.033 PMid:17403408 DOI: https://doi.org/10.1016/j.ajog.2006.11.033
Sadlecki P, Grabiec M, Walentowicz-Sadlecka M. Prenatal clinical assessment of NT-proBNP as a diagnostic tool for preeclampsia, gestational hypertension and gestational diabetes mellitus. PLoS One. 2016;11(9):e0162957. https://doi.org/10.1371/journal.pone.0162957 PMid:27685993 DOI: https://doi.org/10.1371/journal.pone.0162957
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation. 2018 Nov 13;138(20):e618-e51. DOI: https://doi.org/10.1161/CIR.0000000000000617
Ottani F, Galvani M, Nicolini FA, Ferrini D, Pozzati A, Di Pasquale G, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J. 2000;140(6):917-27. https://doi.org/10.1067/mhj.2000.111107 PMid:11099996 DOI: https://doi.org/10.1067/mhj.2000.111107
Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, Hoogeveen RC, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation. 2011;123(13):1367-76. https://doi.org/10.1161/circulationaha.110.005264 PMid:21422391 DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.005264
Pergialiotis V, Prodromidou A, Frountzas M, Perrea DN, Papantoniou N. Maternal cardiac troponin levels in preeclampsia: A systematic review. J Matern Fetal Neonatal Med. 2016;29(20):3386-90. https://doi.org/10.3109/14767058.2015.1127347 PMid:26745550 DOI: https://doi.org/10.3109/14767058.2015.1127347
Fleming SM, O’Gorman T, Finn J, Grimes H, Daly K, Morrison JJ. Cardiac troponin I in pre-eclampsia and gestational hypertension. BJOG. 2000;107(11):1417-20. https://doi.org/10.1111/j.1471-0528.2000.tb11658.x PMid:11117772 DOI: https://doi.org/10.1111/j.1471-0528.2000.tb11658.x
Morton A, Morton A. High sensitivity cardiac troponin I levels in preeclampsia. Pregnancy Hypertens. 2018;13:79-82. https://doi.org/10.1016/j.preghy.2018.04.020 PMid:30177077 DOI: https://doi.org/10.1016/j.preghy.2018.04.020
Ravichandran J, Woon SY, Quek YS, Lim YC, Noor EM, Suresh K, et al. High-sensitivity cardiac troponin I levels in normal and hypertensive pregnancy. Am J Med. 2019;132(3):362-6. https://doi.org/10.1016/j.amjmed.2018.11.017 PMid:30503877 DOI: https://doi.org/10.1016/j.amjmed.2018.11.017
Joyal D, Leya F, Koh M, Besinger R, Ramana R, Kahn S, et al. Troponin I levels in patients with preeclampsia. Am J Med. 2007;120(9):819.e13-4. https://doi.org/10.1016/j.amjmed.2006.05.068 PMid:17765054 DOI: https://doi.org/10.1016/j.amjmed.2006.05.068
Umazume T, Yamada S, Yamada T, Ishikawa S, Furuta I, Iwano H, et al. Association of peripartum troponin I levels with left ventricular relaxation in women with hypertensive disorders of pregnancy. Open Heart. 2018;5(2):e000829. https://doi.org/10.1136/openhrt-2018-000829 PMid:30245837 DOI: https://doi.org/10.1136/openhrt-2018-000829
Muijsers HE, Westermann D, Birukov A, van der Heijden OW, Drost JT, Kräker K, et al. High-sensitivity cardiac troponin I in women with a history of early-onset preeclampsia. J Hypertens. 2020;38(10):1948-54. https://doi.org/10.1097/hjh.0000000000002497 PMid:32890270 DOI: https://doi.org/10.1097/HJH.0000000000002497
Homsak E, Gruson D. Soluble ST2: A complex and diverse role in several diseases. Clin Chim Acta. 2020;507:75-87. https://doi.org/10.1016/j.cca.2020.04.011 PMid:32305537 DOI: https://doi.org/10.1016/j.cca.2020.04.011
Sanada S, Hakuno D, Higgins L, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538-49. https://doi.org/10.1172/jci30634 PMid:17492053 DOI: https://doi.org/10.1172/JCI30634
Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160(4):721-8. https://doi.org/10.1016/j.ahj.2010.06.033 PMid:20934567 DOI: https://doi.org/10.1016/j.ahj.2010.06.033
Pratama RS, Hartopo AB, Anggrahini DW, Dewanto VC, Dinarti LK. Serum soluble suppression of tumorigenicity-2 level associates with severity of pulmonary hypertension associated with uncorrected atrial septal defect. Pulm Circ. 2020;10(2):2045894020915832. https://doi.org/10.1177/2045894020915832 PMid:32518620 DOI: https://doi.org/10.1177/2045894020915832
Zhang Y, Fan Z, Liu H, Ma J, Zhang M. Correlation of plasma soluble suppression of tumorigenicity-2 level with the severity and stability of coronary atherosclerosis. Coron Artery Dis. 2020;31(7):628-35. https://doi.org/10.1097/mca.0000000000000851 PMid:32040025 DOI: https://doi.org/10.1097/MCA.0000000000000851
Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highlysensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2(1):65-72. https://doi.org/10.1016/j.jchf.2013.10.005 PMid:24622120 DOI: https://doi.org/10.1016/j.jchf.2013.10.005
AbouEzzeddine OF, McKie PM, Dunlay SM, Stevens SR, Felker GM, Borlaug BA, et al. Suppression of tumorigenicity 2 in heart failure with preserved ejection fraction. J Am Heart Assoc. 2017;6(2):e004382. https://doi.org/10.1161/jaha.116.004382 PMid:28214792 DOI: https://doi.org/10.1161/JAHA.116.004382
Romero R, Chaemsaithong P, Tarca AL, Korzeniewski SJ, Maymon E, Pacora P, et al. Maternal plasma-soluble ST2 concentrations are elevated prior to the development of early and late onset preeclampsia-a longitudinal study. J Matern Fetal Neonatal Med. 2018;31(4):418-32. https://doi.org/10.1080/14767058.2017.1286319 PMid:28114842 DOI: https://doi.org/10.1080/14767058.2017.1286319
Stampalija T, Chaiworapongsa T, Romero R, Chaemsaithong P, Korzeniewski SJ, Schwartz AG, et al. Maternal plasma concentrations of sST2 and angiogenic/anti-angiogenic factors in preeclampsia. J Matern Fetal Neonatal Med. 2013;26(14):1359‑70. https://doi.org/10.3109/14767058.2013.784256 PMid:23488689 DOI: https://doi.org/10.3109/14767058.2013.784256
Mugerli S, Ambrožič J, Geršak K, Lučovnik M. Elevated soluble-ST2 concentrations in preeclampsia correlate with echocardiographic parameters of diastolic dysfunction andreturn to normal values one year after delivery. J Matern Fetal Neonatal Med. 2021;34(3):379-85. https://doi.org/10.1080/14767058.2019.1609934 PMid:31056999 DOI: https://doi.org/10.1080/14767058.2019.1609934
de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: A novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11(9):811‑7. https://doi.org/10.1093/eurjhf/hfp097 PMid:19648160 DOI: https://doi.org/10.1093/eurjhf/hfp097
Frunza O, Russo I, Saxena A, Shinde AV, Humeres C, Hanif W, et al. Myocardial galectin-3 expression is associated with remodeling of the pressure-overloaded heart and may delay the hypertrophic response without affecting survival, dysfunction, and cardiac fibrosis. Am J Pathol. 2016;186(5):1114-27. https://doi.org/10.1016/j.ajpath.2015.12.017 PMid:26948424 DOI: https://doi.org/10.1016/j.ajpath.2015.12.017
Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121-8. https://doi.org/10.1161/01.cir.0000147181.65298.4d PMid:15520318 DOI: https://doi.org/10.1161/01.CIR.0000147181.65298.4D
Meijers WC, Januzzi JL, deFilippi C, Adourian AS, Shah SJ, van Veldhuisen DJ, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: A pooled analysis of 3 clinical trials. Am Heart J. 2014;167(6):853-60.e4. https://doi.org/10.1016/j.ahj.2014.02.011 PMid:24890535 DOI: https://doi.org/10.1016/j.ahj.2014.02.011
Mazurek JA, Horne BD, Saeed W, Sardar MR, Zolty R. Galectin-3 levels are elevated and predictive of mortality in pulmonary hypertension. Heart Lung Circ. 2017;26(11):1208‑15. https://doi.org/10.1016/j.hlc.2016.12.012 PMid:28242288 DOI: https://doi.org/10.1016/j.hlc.2016.12.012
Nar G, Aksan G, Gorgulu O, Inci S, Soylu K, Ozdemir M, et al. Galectin-3 as a novel biomarker for the diagnosis of essential hypertension with left ventricular hypertrophy. J Exp Clin Med. 2016;33:123-8.
Zaborska B, Sygitowicz G, Smarż K, Pilichowska-Paszkiet E, Budaj A. Galectin-3 is related to right ventricular dysfunction in heart failure patients with reduced ejection fraction and may affect exercise capacity. Sci Rep. 2020;10(1):16682. https://doi.org/10.1038/s41598-020-73634-8 PMid:33028850 DOI: https://doi.org/10.1038/s41598-020-73634-8
Taha AS, Zahraei Z, Al-Hakeim H. Serum apelin and galectin-3 in preeclampsia in Iraq. Preprints. 2019;2019:100270. https://doi.org/10.20944/preprints201910.0270.v1 DOI: https://doi.org/10.20944/preprints201910.0270.v1
Jeschke U, Mayr D, Schiessl B, Mylonas I, Schulze S, Kuhn C, et al. Expression of galectin-1, -3 (gal-1, gal-3) and the Thomsen-Friedenreich (TF) antigen in normal, IUGR, preeclamptic and HELLP placentas. Placenta. 2007;28(11-12):1165-73. https://doi.org/10.1016/j.placenta.2007.06.006 DOI: https://doi.org/10.1016/j.placenta.2007.06.006
Demmert M, Faust K, Bohlmann MK, Tröger B, Göpel W, Herting E, et al. Galectin-3 in cord blood of term and preterm infants. Clin Exp Immunol. 2012;167(2):246-51. https://doi.org/10.1111/j.1365-2249.2011.04509.x PMid:22236000 DOI: https://doi.org/10.1111/j.1365-2249.2011.04509.x
Breit SN, Johnen H, Cook AD, Tsai VW, Mohammad ME, Kuffner T, et al. The TGF-β superfamily cytokine, MIC-1/GDF15: A pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth Factors. 2011;29(5):187-95. https://doi.org/10.3109/08977194.2011.607137 PMid:21831009 DOI: https://doi.org/10.3109/08977194.2011.607137
Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351-60. https://doi.org/10.1161/01.res.0000202805.73038.48 PMid:16397141 DOI: https://doi.org/10.1161/01.RES.0000202805.73038.48
Schlittenhardt D, Schober A, Strelau J, Bonaterra GA, Schmiedt W, Unsicker K, et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004;318(2):325-33. https://doi.org/10.1007/s00441-004-0986-3 PMid:15459768 DOI: https://doi.org/10.1007/s00441-004-0986-3
Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the valsartan heart failure trial. Circulation. 2010;122(14):1387-95. https://doi.org/10.1161/circulationaha.109.928846 PMid:20855664 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.928846
Kempf T, Horn-Wichmann R, Brabant G, Peter T, Allhoff T, Klein G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007;53(2):284-91. https://doi.org/10.1373/clinchem.2006.076828 PMid:17185363 DOI: https://doi.org/10.1373/clinchem.2006.076828
Chen Q, Wang Y, Zhao M, Hyett J, da Silva Costa F, Nie G. Serum levels of GDF15 are reduced in preeclampsia and the reduction is more profound in late-onset than early-onset cases. Cytokine. 2016;83:226-30. https://doi.org/10.1016/j.cyto.2016.05.002 PMid:27173615 DOI: https://doi.org/10.1016/j.cyto.2016.05.002
Sugulle M, Dechend R, Herse F, Weedon-Fekjaer MS, Johnsen GM, Brosnihan KB, et al. Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus. Hypertension. 2009;54(1):106-12. https://doi.org/10.1161/hypertensionaha.109.130583 PMid:19470878 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.109.130583
Yuksel TI, Mathyk BA, Cetin BA, Turhan U, Okumus ZG, Yildirim GY, et al. Maternal levels of growth differentiation factor-15 in patients with preeclampsia. Hypertens Pregnancy. 2018;37(4):192-6. https://doi.org/10.1080/10641955.2018.1524477 PMid:30295110 DOI: https://doi.org/10.1080/10641955.2018.1524477
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Dolina Gencheva, Fedya Nikolov, Ekaterina Uchikova, Krasimira Hristova, Rosen Mihaylov, Blagovesta Pencheva (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0