Effect of Glutamine on Apoptosis-inducing Factor Expression and Apoptosis of Glomerular Parietal Epithelial Cells of Cisplatin-exposed Rats

Authors

  • Ihsan Fahmi Rofananda Medicine Undergraduate Program, Faculty of Medicine, University of Airlangga, Surabaya, East Java, Indonesia
  • Jusak Nugraha Department of Clinical Pathology, Faculty of Medicine, University of Airlangga, Surabaya, East Java, Indonesia
  • Imam Susilo Department of Anatomical Pathology, Faculty of Medicine, University of Airlangga, Surabaya, East Java, Indonesia https://orcid.org/0000-0001-9248-4054
  • Miyayu Soneta Sofyan Department of Clinical Pathology, Faculty of Medicine, University of Airlangga, Surabaya, East Java, Indonesia https://orcid.org/0000-0001-5561-8084

DOI:

https://doi.org/10.3889/oamjms.2021.5915

Keywords:

Apoptosis-inducing factor, Apoptosis, Cisplatin, Glomerular parietal epithelial cell, Glutamine

Abstract

AIM: This study analyzed the nephroprotective effect by examining apoptosis-inducing factor (AIF) expression and apoptosis rate in the glomerular parietal epithelial cell of cisplatin-exposed rats.

METHODS: Samples consisted of 30 rats (divided into 3 groups: Group P0 received no treatment, group P1 received a cisplatin injection on the 7th day, and group P2 received glutamine injection on days 1–7 and cisplatin injection on the 7th day). After 72 h, the tissue samples were immunohistochemically processed. AIF expression was measured in an Allred score. The apoptosis rate was measured in apoptotic cells/field of view. Statistical analysis was carried out using JASP Statistics ver. 0.12.0 (p < 0.05).

RESULTS: AIF expression values are follows: P0 = 4.89 ± 0.418, P1 = 6.14 ± 0.685, and P2 = 4.95 ± 0.530. The Kruskal–Wallis test result showed a significant difference (p < 0.05) between the groups and Dunn’s post hoc test showed a significant difference between P0 and P1 and between P1 and P2, but no significant difference between P0 and P2. Meanwhile, apoptosis rate values are as follows: P0 = 24.3 ± 9.821, P1 = 123.6 ± 16.008, and P2 = 77.2 ± 10.644. The Kruskal–Wallis test result showed a significant difference (p < 0.05) between the groups, and Dunn’s post hoc test showed a significant difference between P0 and P1, between P1 and P2, and between P0 and P2.

CONCLUSION: The expression of AIF and apoptosis of glomerular parietal epithelial cells of the cisplatin-exposed rat has decreased after glutamine treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492 PMid:30207593 DOI: https://doi.org/10.3322/caac.21492

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;1:364-78. PMid:25058905 DOI: https://doi.org/10.1016/j.ejphar.2014.07.025

Pabla N, Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994-1007. https://doi.org/10.1038/sj.ki.5002786 PMid:18272962 DOI: https://doi.org/10.1038/sj.ki.5002786

Aljubran A, Leighl N, Pintilie M, Burkes R. Improved compliance with adjuvant vinorelbine and cisplatin in non-small cell lung cancer. Hematol Oncol Stem Cell Ther. 2009;2(1):265-71. https://doi.org/10.1016/s1658-3876(09)50036-2 PMid:20063556 DOI: https://doi.org/10.1016/S1658-3876(09)50036-2

Szturz P, Wouters K, Kiyota N, Tahara M, Prabhash K, Noronha V, et al. Low-dose vs. high-dose cisplatin: Lessons learned from 59 chemoradiotherapy trials in head and neck cancer. Front Oncol. 2019;9:86. https://doi.org/10.3389/fonc.2019.00086 PMid:30874300 DOI: https://doi.org/10.3389/fonc.2019.00086

Kidera Y, Kawakami H, Sakiyama T, Okamoto K, Tanaka K, Takeda M, et al. Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PLoS One. 2014;9(7):e101902. https://doi.org/10.1371/journal. pone.0101902 PMid:25020203 DOI: https://doi.org/10.1371/journal.pone.0101902

Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA. 2009;302(11):1179-85. https://doi.org/10.1001/jama.2009.1322 PMid:19755696 DOI: https://doi.org/10.1001/jama.2009.1322

Perazella MA. Pharmacology behind common drug nephrotoxicities. Clin J Am Soc Nephrol. 2018;13(12):1897-908. PMid:29622670 DOI: https://doi.org/10.2215/CJN.00150118

Kohn S, Fradis M, Ben-David J, Zidan J, Robinson E. Nephrotoxicity of combined treatment with cisplatin and gentamicin in the guinea pig: Glomerular injury findings. Ultrastruct Pathol. 2002;26(6):371-82. https://doi.org/10.1080/01913120290104683 PMid:12537762 DOI: https://doi.org/10.1080/01913120290104683

Radhakrishnan J, Perazella MA. Drug-induced glomerular disease: Attention required! Clin J Am Soc Nephrol. 2015;10(7):1287-90. PMid:25876771 DOI: https://doi.org/10.2215/CJN.01010115

Bröker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: A review. Clin Cancer Res. 2005;11(9):3155-62. https://doi.org/10.1158/1078-0432.ccr-04-2223 PMid:15867207 DOI: https://doi.org/10.1158/1078-0432.CCR-04-2223

Matés JM, Segura JA, Alonso FJ, Márquez J. Pathways from glutamine to apoptosis. Front Biosci. 2006;11:3164-80. PMid:16720383 DOI: https://doi.org/10.2741/2040

Hamiel CR, Pinto S, Hau A, Wischmeyer PE. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol. 2009;297(6):C1509-19. https://doi.org/10.1152/ajpcell.00240.2009 PMid:19776393 DOI: https://doi.org/10.1152/ajpcell.00240.2009

Kim JY, Han Y, Lee JE, Yenari MA. The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets. 2018;22(3):191-9. https://doi.org/10.1080/147282 22.2018.1439477 PMid:29421932 DOI: https://doi.org/10.1080/14728222.2018.1439477

Federer WT. Experimental Design: Theory and Application. Calcutta: Oxford & IBH; 1967.

Tsuruya K, Ninomiya T, Tokumoto M, Hirakawa M, Masutani K, Taniguchi M, et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 2003;63(1):72-82. https://doi.org/10.1046/j.1523-1755.2003.00709.x PMid:12472770 DOI: https://doi.org/10.1046/j.1523-1755.2003.00709.x

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490-518. https://doi.org/10.3390/toxins2112490 PMid:22069563 DOI: https://doi.org/10.3390/toxins2112490

Yamamoto Y, Watanabe K, Matsushita H, Tsukiyama I, Matsuura K, Wakatsuki A. Multivariate analysis of risk factors for cisplatin-induced nephrotoxicity in gynecological cancer. J Obstet Gynaecol Res. 2017;43(12):1880-6. https://doi.org/10.1111/jog.13457 PMid:28984058 DOI: https://doi.org/10.1111/jog.13457

Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med. 2005;11(7):725-30. PMid:16015365 DOI: https://doi.org/10.1038/nm1263

Liu L, Xing D, Chen WR. Micro-calpain regulates caspase-dependent and apoptosis inducing factor-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis. Int J Cancer. 2009;125(12):2757-66. https://doi.org/10.1002/ijc.24626 PMid:19705411 DOI: https://doi.org/10.1002/ijc.24626

Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62:670-84. https://doi.org/10.1007/s00018-004-4464-6 PMid:15770419 DOI: https://doi.org/10.1007/s00018-004-4464-6

Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab. 2005;25(7):899-910. https://doi.org/10.1038/sj.jcbfm.9600080 PMid:15744251 DOI: https://doi.org/10.1038/sj.jcbfm.9600080

Kim HJ, Park DJ, Kim JH, Jeong EY, Jung MH, Kim TH, et al. Glutamine protects against cisplatin-induced nephrotoxicity by decreasing cisplatin accumulation. J Pharmacol Sci. 2015;127(1):117-26. https://doi.org/10.1016/j.jphs.2014.11.009 PMid:25704027 DOI: https://doi.org/10.1016/j.jphs.2014.11.009

Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619-34. https://doi.org/10.1038/nrc.2016.71 PMid:27492215 DOI: https://doi.org/10.1038/nrc.2016.71

Matés JM, Campos-Sandoval JA, de los Santos-Jiménez JL, Márquez J. Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett. 2019;467:29-39. https://doi.org/10.1016/j.canlet.2019.09.011 PMid:31574293 DOI: https://doi.org/10.1016/j.canlet.2019.09.011

Balcombe JP, Barnard ND, Sandusky C. Laboratory routines cause animal stress. Contemp Top Lab Anim Sci. 2004;43(6):42-51. PMid:15669134

Downloads

Published

2021-05-14

How to Cite

1.
Rofananda IF, Nugraha J, Susilo I, Sofyan MS. Effect of Glutamine on Apoptosis-inducing Factor Expression and Apoptosis of Glomerular Parietal Epithelial Cells of Cisplatin-exposed Rats. Open Access Maced J Med Sci [Internet]. 2021 May 14 [cited 2024 Apr. 25];9(A):367-72. Available from: https://oamjms.eu/index.php/mjms/article/view/5915

Most read articles by the same author(s)