Photoprotective and Inhibitory Activity of Tyrosinase in Extract and Fractions of Terminalia catappa L.
DOI:
https://doi.org/10.3889/oamjms.2021.5940Keywords:
Erythema transmission, Pigmentation transmission, Sun protection factor, Terminalia catappa Linn., TyrosinaseAbstract
BACKGROUND: Chronic exposure to ultraviolet (UV) radiation causes various skin damages. One of the most significant risks to skin occurrence is cancer and photoaging. Recent strategies for photoprotection have included incorporating natural sunscreens and antityrosinase.
AIM: This study aimed to determine the sun protection factor (SPF) and inhibitory activity of tyrosinase of the extract and fractions of leaves of Terminalia catappa Linn.
METHOD: The dried leaves were macerated with 96% ethanol and fractionated using n-hexane, ethyl acetate, and water. The extract and fractions were screened for their phytochemical profile, and tyrosinase inhibitory activity was evaluated and expressed as IC50. The photoprotective activity of extract and fractions were measured by a UV spectrophotometric.
RESULTS: Among the tested samples, the ethyl acetate fraction showed ultraprotection on erythema transmission rate (%TE), sunblock on pigmentation transmission (%TP), and minimum protection on SPF. Ethyl acetate fraction showed the highest activity to inhibit tyrosinase (IC50 was 50.54±2.37 μg/mL). The phytochemical analysis of ethyl acetate fraction revealed the presence of phenolic and flavonoid compounds.
CONCLUSION: This study’s findings revealed a higher tyrosinase inhibitor and sun protection capacity of ethyl acetate fraction of leaves of T. catappa and suitable to develop as a cosmetic agent.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Lowe NJ. An overview of ultraviolet radiation, sunscreens, and photo-induced dermatoses. Dermatol Clin. 2006;24(1):9-17. https://doi.org/10.1016/j.det.2005.08.001 PMid:16311163 DOI: https://doi.org/10.1016/j.det.2005.08.001
Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76(3):S100-9. https://doi.org/10.1016/j.jaad.2016.09.038 PMid:28038885 DOI: https://doi.org/10.1016/j.jaad.2016.09.038
Bissonnette R, Claveau J, Gupta AK. Ultraviolet a radiation and the need for protection. J Cutan Med Surg. 2006;10(Suppl 3):S1-7. https://doi.org/10.2310/7750.2006.00025 DOI: https://doi.org/10.2310/7750.2006.00025
Matsumura Y, Ananthaswamy H. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol. 2004;195(3):298- 308. https://doi.org/10.1016/j.taap.2003.08.019 PMid:15020192 DOI: https://doi.org/10.1016/j.taap.2003.08.019
Norval M, Lucas RM, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, et al. The human health effects of ozone depletion and interactions with climate change. Photochem Photobiol Sci. 2011;10(2):199-225. https://doi.org/10.1039/c0pp90044c PMid:21253670 DOI: https://doi.org/10.1039/c0pp90044c
Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565-75. https://doi.org/10.1038/sj.jid.5700340 PMid:17108903 DOI: https://doi.org/10.1038/sj.jid.5700340
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J. 2016;15:e71. https://doi.org/10.1186/s12937-016-0186-5 PMid:27456681 DOI: https://doi.org/10.1186/s12937-016-0186-5
Tan BL, Norhaizan ME, Liew WPP, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol. 2018;9:e1162. https://doi.org/10.3389/fphar.2018.01162 PMid:30405405 DOI: https://doi.org/10.3389/fphar.2018.01162
Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Yazdani Charati J. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran J Pharm Res. 2014;13(3):1041-7. PMid:25276206
Lorigo M, Cairrao E. Antioxidants as stabilizers of UV filters: An example for the UV-B filter octylmethoxycinnamate. Biomed Dermatol. 2019;3:e11. https://doi.org/10.1186/s41702-019-0048-9 DOI: https://doi.org/10.1186/s41702-019-0048-9
Wen KC, Shih IC, Hu JC, Liao ST, Su TW, Chiang HM. Inhibitory effects of Terminalia catappa on UVB-induced photodamage in fibroblast cell line. Evid Based Complement Alternat Med. 2011;2011:e904532. https://doi.org/10.1155/2011/904532 PMid:20981325 DOI: https://doi.org/10.1155/2011/904532
Huang YH, Wu PY, Wen KC, Lin CY, Chiang HM. Protective effects and mechanisms of Terminalia catappa L. methanolic extract on hydrogen-peroxide-induced oxidative stress in human skin fibroblasts. BMC Complement Altern Med. 2018;18:e266. https://doi.org/10.1186/s12906-018-2308-4 PMid:30285714 DOI: https://doi.org/10.1186/s12906-018-2308-4
Pertiwi DI, Naufalin R, Arsil P, Erminawati, Wicaksono R, Auliya T. Quality of simplician bioactive components and liquid extract of kecombrang flower powder from temperature and time optimization results. IOP Conf Ser Earth Environ Sci. 2019;406:e012008. https://doi.org/10.1088/1755-1315/406/1/012008 DOI: https://doi.org/10.1088/1755-1315/406/1/012008
Putra IB, Jusuf NK, Sumantri IB. The potency of Hibiscus rosa-sinensis Linn. Leaves ethanol extract as hair growth. Open Access Maced J Med Sci. 2020;8(A):89-92. https://doi.org/10.3889/oamjms.2020.4211 DOI: https://doi.org/10.3889/oamjms.2020.4211
Wu L, Chen C, Cheng C, Dai H, Ai Y, Lin C, et al. Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. Biomed Res Int. 2018;2018:e5201786. https://doi.org/10.1155/2018/5201786 DOI: https://doi.org/10.1155/2018/5201786
Costa SC, Detoni CB, Branco CR, Botura MB, Branco A. In vitro photoprotective effects of Marcetia taxifolia ethanolic extract and its potential for sunscreen formulations. Rev Bras Farmacogn. 2015;25(4):413-8. https://doi.org/10.1016/j.bjp.2015.07.013 DOI: https://doi.org/10.1016/j.bjp.2015.07.013
Lesser M, Turtle S, Farrell J, Walker C. Exposure to ultraviolet radiation (290-400 nm) causes oxidative stress, DNA damage, and expression of p53/p73 in laboratory experiments on embryos of the spotted salamander, Ambystoma maculatum. Physiol Biochem Zool. 2001;74(5):733-41. PMid:11517458 DOI: https://doi.org/10.1086/322931
Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med. 2018;13:e20. https://doi.org/10.1186/s13020-018-0177-x PMid:29692864 DOI: https://doi.org/10.1186/s13020-018-0177-x
Saewan N, Jimtaisong A. Photoprotection of natural flavonoids. J Appl Pharm Sci. 2013;3(9):129-41. https://doi.org/10.7324/JAPS.2013.3923 DOI: https://doi.org/10.7324/JAPS.2013.3923
He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother. 2020;134:e111161. https://doi.org/10.1016/j.biopha.2020.111161 PMid:33360043 DOI: https://doi.org/10.1016/j.biopha.2020.111161
Cozzi AC, Perugini P, Gourion-Arsiquaud S. Comparative behavior between sunscreens based on free or encapsulated UV filters in term of skin penetration, retention and photo-stability. Eur J Pharm Sci. 2018;121:309-18. https://doi.org/10.1016/j.ejps.2018.06.001 PMid:29874551 DOI: https://doi.org/10.1016/j.ejps.2018.06.001
Rinayanti A, Pertiwi R. In vitro and in vivo sunscreen activity of active compounds isolated from fruits of Phaleria marcocarpha (Scheff.) Boerl. J Young Pharm. 2018;10(Suppl 2):s106-10. https://doi.org/10.5530/jyp.2018.2s.21 DOI: https://doi.org/10.5530/jyp.2018.2s.21
Lourith N, Kanlayavattanakul M, Chingunpitak J. Development of sunscreen products containing passion fruit seed extract. Braz J Pharm Sci. 2017;53:e16116. https://doi.org/10.1590/s2175-97902017000116116 DOI: https://doi.org/10.1590/s2175-97902017000116116
Osterwalder U, Herzog B. Sun protection factors: World wide confusion. Br J Dermatol. 2009;161(Suppl 3):13-24. https://doi.org/10.1111/j.1365-2133.2009.09506.x DOI: https://doi.org/10.1111/j.1365-2133.2009.09506.x
Liang CP, Chang CH, Liang CC, Hung KY, Hsieh CW. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames. Molecules. 2014;19(4):4681- 94. https://doi.org/10.3390/molecules19044681 PMid:24739930 DOI: https://doi.org/10.3390/molecules19044681
Nguyen HX, Nguyen NT, Nguyen MH, Le TH, Van Do TN, Hung TM, et al. Tyrosinase inhibitory activity of flavonoids from Artocarpus heterophyllous. Chem Cent J. 2016;10:e2. https://doi.org/10.1186/s13065-016-0150-7 PMid:26834825 DOI: https://doi.org/10.1186/s13065-016-0150-7
Zuo AR, Dong HH, Yu YY, Shu QL, Zheng LX, Yu XY, et al. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin Med. 2018;13:e51. https://doi.org/10.1186/ s13020-018-0206-9 PMid:30364385
Chyau CC, Tsai SY, Ko PT, Mau JL. Antioxidant properties of solvent extracts from Terminalia catappa leaves. Food Chem. 2002;78(4):483-8. https://doi.org/https://doi.org/10.1016/S0308-8146(02)00162-0 DOI: https://doi.org/10.1016/S0308-8146(02)00162-0
Addor FA. Antioxidants in dermatology. An Bras Dermatol. 2017;92(3):356-62. https://doi.org/10.1590/abd1806-4841.20175697 PMid:29186248 DOI: https://doi.org/10.1590/abd1806-4841.20175697
Rahimah SB, Djunaedi DD, Soeroto AY, Bisri T. The the phytochemical screening, total phenolic contents and antioxidant activities in vitro of white oyster mushroom (Pleurotus ostreatus) preparations. Open Access Maced J Med Sci. 2019;7(15):2404- 12. https://doi.org/10.3889/oamjms.2019.741 PMid:31666837 DOI: https://doi.org/10.3889/oamjms.2019.741
Downloads
Published
How to Cite
License
Copyright (c) 2021 Maulita Indrisari, Sartini Sartini, Upik A. Miskad, Khairuddin Djawad, Karlina Amir Tahir, Nurkhairi Nurkhairi, Lukman Muslimin (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0