Synergistic Effect of Curcuma longa Extract in Combination with Phyllanthus niruri Extract in Regulating Annexin A2, Epidermal Growth Factor Receptor, Matrix Metalloproteinases, and Pyruvate Kinase M1/2 Signaling Pathway on Breast Cancer Stem Cell
DOI:
https://doi.org/10.3889/oamjms.2021.5941Keywords:
Curcuma longa, Phyllanthus niruri, Bioinformatics, In vitro, Metastatic, Stemness, Molecular targeted therapyAbstract
AIM: This study aimed to investigate the synergistic effects of the combination between Curcuma longa extract (CL) and Phyllanthus niruri extract (PN) in inhibiting optimally the MDA-MB-231 breast cancer stem cells (BCSCs) growth and metastatic by exploring the target and molecular mechanism using integrative bioinformatics approaches and in vitro.
METHODS: CL and PN extracts were prepared by maceration method using ethanol 70%. The antiproliferative effect of CL and PN single and combination treatment was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay. The bioinformatic approach was performed to identify molecular targets, key proteins, and molecular mechanism of curcumin and phyllanthin as CL and PN secondary metabolite, respectively, targeted at stemness and migration pathway of BCSCs.
RESULTS: The in vitro study showed that CL and PN possess cytotoxic activity in time- and dose-dependent manner. The combination of CL and PN has a synergistic effect by modulating the sensitivity of cells. Using a bioinformatics approach, the annexin A2 (ANXA2), epidermal growth factor receptor (EGFR), matrix metalloproteinases (MMPs), and pyruvate kinase M1/2 (PKM) as potential targets of curcumin and phyllanthin correlated with metastatic inhibition of BC. In addition, molecular docking showed that curcumin and phyllanthin performed similar or better interaction to stemness differentiation regulator pathway particularly histone deacetylase 1, EGFR, Heat Shock Protein 90 Alpha Family Class B Member 1, Hypoxia Inducible Factor 1 Subunit Alpha, and MMP9.
CONCLUSION: Combination of CL and PN has potential for the treatment of metastatic BCSCs by targeting ANXA2, EGFR, MMPs, and PKM to resolve stemness and inhibit of BCSCs.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
World Health Organization. Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 Million Cancer Deaths in 2018. Geneva: World Health Organization; 2018. p. 13-5. Available from: http://www.gco.iarc.fr/today/online-analysis-pie?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=total&sex=2&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=6&ages_group%5B%5D=13&nb_items=7&group.https://doi.org/10.1787/20758480 -table13. [Last accessed on 2021 Feb 24] DOI: https://doi.org/10.1787/20758480
Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell. 2014;14(3):306-21. https://doi.org/10.1016/j.stem.2014.02.002 PMid:24607405 DOI: https://doi.org/10.1016/j.stem.2014.02.002
Rey I, Putra A, Lindarto D, Yusuf F. Association between CD133 expression and clinicopathological profile in colorectal cancer. Med Glas (Zenica). 2020;17(2):304-9. PMid:32253906
Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8(12):5574-6. https://doi.org/10.1002/cam4.2474 PMid:31397113 DOI: https://doi.org/10.1002/cam4.2474
Barr S, Thomson S, Buck E, Russo S, Petti F, Sujka-Kwok I, et al. Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin Exp Metastasis. 2008;25(6):685-93. https://doi.org/10.1007/s10585-007-9121-7 PMid:18236164 DOI: https://doi.org/10.1007/s10585-007-9121-7
Hwang J, Hodis HN, Hsiai TK, Asatryan L, Sevanian A. Role of annexin II in estrogen-induced macrophage matrix metalloproteinase-9 activity: The modulating effect of statins. Atherosclerosis. 2006;189(1):76-82. https://doi.org/10.1016/j.atherosclerosis.2005.11.026 PMid:16386257 DOI: https://doi.org/10.1016/j.atherosclerosis.2005.11.026
Shetty PK, Thamake SI, Biswas S, Johansson SL, Vishwanatha JK. Reciprocal regulation of annexin A2 and EGFR with her-2 in her-2 negative and herceptin-resistant breast cancer. PLoS One. 2012;7(9):e44299. https://doi.org/10.1371/journal.pone.0044299 PMid:22957061 DOI: https://doi.org/10.1371/journal.pone.0044299
Cheng TY, Yang YC, Wang HP, Tien YW, Shun CT, Huang HY, et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene. 2018;37(13):1730-42. https://doi.org/10.1038/s41388-017-0086-y PMid:29335522 DOI: https://doi.org/10.1038/s41388-017-0086-y
Gibbs LD, Mansheim K, Maji S, Nandy R, Lewis CM, Vishwanatha JK, et al. Clinical significance of annexin A2 expression in breast cancer patients. Cancers (Basel). 2021;13(1):2. https://doi.org/10.3390/cancers13010002 PMid:33374917 DOI: https://doi.org/10.3390/cancers13010002
Christensen MV, Høgdall CK, Umsen KM, Høgdall EV. Annexin A2 and cancer: A systematic review. Int J Oncol. 2018;52(1):5-18. PMid:29115416
Dos Santos AF, De Almeida DRQ, Terra LF, Baptista MS, Labriola L. Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat. 2019;5:25. https://doi.org/10.20517/2394-4722.2018.83 DOI: https://doi.org/10.20517/2394-4722.2018.83
Middleton JD, Stover DG, Hai T. Chemotherapy-exacerbated breast cancer metastasis: A paradox explainable by dysregulated adaptive-response. Int J Mol Sci. 2018;19(11):3333. https://doi.org/10.3390/ijms19113333 PMid:30373101 DOI: https://doi.org/10.3390/ijms19113333
Wang Y, Chen K, Cai Y, Cai Y, Yuan X, Wang L, et al. Annexin A2 could enhance multidrug resistance by regulating NF-κB signaling pathway in pediatric neuroblastoma. J Exp Clin Cancer Res. 2017;36(1):111. https://doi.org/10.1186/s13046-017-0581-6 PMid:28814318 DOI: https://doi.org/10.1186/s13046-017-0581-6
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, et al. Effective medicinal plant in cancer treatment, Part 2: Review study. J Evid Based Complement Altern Med. 2017;22(4):982-95. https://doi.org/10.1177/2156587217696927 PMid:28359161 DOI: https://doi.org/10.1177/2156587217696927
Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm J. 2019;27(4):565-73. https://doi.org/10.1016/j.jsps.2019.02.004 PMid:31061626 DOI: https://doi.org/10.1016/j.jsps.2019.02.004
Yin SY, Wei WC, Jian FY, Yang NS. Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Altern Med. 2013;2013:302426. PMid:23956768 DOI: https://doi.org/10.1155/2013/302426
Huang ST, Yang RC, Yang LJ, Lee PN, Pang JH. Phyllanthus urinaria triggers the apoptosis and Bcl-2 down-regulation in Lewis lung carcinoma cells. Life Sci. 2003;72(15):1705-16. https://doi.org/10.1016/s0024-3205(03)00016-x PMid:12559392 DOI: https://doi.org/10.1016/S0024-3205(03)00016-X
Larasati YA, Yoneda-Kato N, Nakamae I, Yokoyama T, Meiyanto E, Kato JY. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci Rep. 2018;8(1):2039. https://doi.org/10.1038/s41598-018-20179-6 PMid:29391517 DOI: https://doi.org/10.1038/s41598-018-20179-6
Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med. 2015;10(5):1615-23. https://doi.org/10.3892/etm.2015.2749 PMid:26640527 DOI: https://doi.org/10.3892/etm.2015.2749
Tang YQ, Jaganath IB, Sekaran SD. Phyllanthus spp. induces selective growth inhibition of PC-3 and mewo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS One. 2010;5(9):e12644. https://doi.org/10.1371/journal.pone.0012644 PMid:20838625 DOI: https://doi.org/10.1371/journal.pone.0012644
Yew HC, Nordin FJ, Thiam TT, Azimahtol HL, Abdullah NR, Ismail Z. Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells. Anticancer Res. 2008;28(6A):3677-89. PMid:19189649
Carneiro ML, Porfírio EP, Otake AH, Chammas R, Báo SN, Guillo LA. Morphological alterations and G0/G1 cell cycle arrest induced by curcumin in human SK-MEL-37 melanoma cells. Braz Arch Biol Technol. 2010;53(2):343-52. https://doi.org/10.1590/s1516-89132010000200013 DOI: https://doi.org/10.1590/S1516-89132010000200013
Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199-225. https://doi.org/10.1016/j.canlet.2008.03.009 PMid:18479807 DOI: https://doi.org/10.1016/j.canlet.2008.03.009
Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP, et al. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem. 2004;279(23):24015-23. https://doi.org/10.1074/jbc.m402305200 PMid:15044484 DOI: https://doi.org/10.1074/jbc.M402305200
Ramasamy TS, Ayob AZ, Myint HHL, Thiagarajah S, Amini F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: Insights into the mechanism of the therapeutic efficacy. Cancer Cell Int. 2015;15(1):96. https://doi.org/10.1186/s12935-015-0241-x PMid:26457069 DOI: https://doi.org/10.1186/s12935-015-0241-x
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887-939. https://doi.org/10.1080/10408398.2018.1552244 PMid:30632782 DOI: https://doi.org/10.1080/10408398.2018.1552244
De Araújo Júnior RF, de Souza TP, Pires JG, Soares LA, de Araújo AA, Petrovick PR, et al. A dry extract of Phyllanthus niruri protects normal cells and induces apoptosis in human liver carcinoma cells. Exp Biol Med (Maywood). 2012;237(11):1281-8. https://doi.org/10.1258/ebm.2012.012130 PMid:23239439 DOI: https://doi.org/10.1258/ebm.2012.012130
Tseng HH, Chen PN, Kuo WH, Wang JW, Chu SC, Hsieh YS. Antimetastatic potentials of phyllanthus urinaria L on A549 and Lewis lung carcinoma cells via repression of matrix-degrading proteases. Integr Cancer Ther. 2012;11(3):267-78. https://doi.org/10.1177/1534735411417128 PMid:22144737 DOI: https://doi.org/10.1177/1534735411417128
Tanvir EM, Hossen MS, Hossain MF, Afroz R, Gan SH, Khalil MI, et al. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J Food Qual. 2017;2017:8471785. https://doi.org/10.1155/2017/8471785 DOI: https://doi.org/10.1155/2017/8471785
Amalina ND, Suzery M, Cahyono B. Cytotoxic activity of Hyptis pectinata extracts on MCF-7 human breast cancer cells. Indones J Cancer Chemoprev. 2020;11(1):1-6. https://doi.org/10.14499/indonesianjcanchemoprev11iss1pp1-6 DOI: https://doi.org/10.14499/indonesianjcanchemoprev11iss1pp1-6
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4 PMid:6606682 DOI: https://doi.org/10.1016/0022-1759(83)90303-4
Ikawati M, Jenie RI, Utomo RY, Amalina ND, Nur Ilmawati GP, Kawaichi M, et al. Genistein enhances cytotoxic and antimigratory activities of doxorubicin on 4T1 breast cancer cells through cell cycle arrest and ROS generation. J Appl Pharm Sci. 2020;10(10):95-104. https://doi.org/10.7324/japs.2020.1010011 DOI: https://doi.org/10.7324/JAPS.2020.1010011
Miladiyah I, Yuanita E, Nuryadi S, Jumina J, Haryana SM, Mustofa M. Synergistic effect of 1,3,6-trihydroxy-4,5,7- trichloroxanthone in combination with doxorubicin on B-cell lymphoma cells and its mechanism of action through molecular docking. Curr Ther Res - Clin Exp. 2020;92:100576. https://doi.org/10.1016/j.curtheres.2020.100576 PMid:32123546 DOI: https://doi.org/10.1016/j.curtheres.2020.100576
Reynolds CP, Maurer BJ. Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol Med. 2005;110(2):173-83. https://doi.org/10.1385/1-59259-869-2:173 PMid:15901935 DOI: https://doi.org/10.1385/1-59259-869-2:173
Jenie RI, Amalina ND, Ilmawati GPN, Utomo RY, Ikawati M, Khumaira A, et al. Cell cycle modulation of CHO-K1 cells under genistein treatment correlates with cells senescence, apoptosis and ROS level but in a dose-dependent manner. Adv Pharm Bull. 2019;9(3):453-61. https://doi.org/10.15171/apb.2019.054 PMid:31592434 DOI: https://doi.org/10.15171/apb.2019.054
Hacker G. The morphology of apoptosis. Cell Tissue Res. 2000;301(1):5-17. PMid:10928277 DOI: https://doi.org/10.1007/s004410000193
Suzery M, Cahyono B, Amalina ND. Antiproliferative and apoptosis effect of hyptolide from Hyptis pectinata (L.) Poit on human breast cancer cells. J Appl Pharm Sci. 2020;10(02):1-6. https://doi.org/10.7324/japs.2020.102001 DOI: https://doi.org/10.7324/JAPS.2020.102001
Fadeel B, Orrenius S. Apoptosis: A basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005;258(6):479-517. https://doi.org/10.1111/j.1365-2796.2005.01570.x PMid:16313474 DOI: https://doi.org/10.1111/j.1365-2796.2005.01570.x
Liu D, Chen Z. The effect of curcumin on breast cancer cells. J Breast Cancer. 2013;16(2):133-7. PMid:23843843 DOI: https://doi.org/10.4048/jbc.2013.16.2.133
Butz AM. Cancer stem cells: Cellular plasticity, niche, and its clinical relevance. J Stem Cell Res Ther. 2016;10(6):139-48. https://doi.org/10.4172/2157-7633.1000363 PMid:27891292 DOI: https://doi.org/10.4172/2157-7633.1000363
Huang Z, Wu T, Liu AY, Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget. 2015;6(37):39550-63. https://doi.org/10.18632/oncotarget.6098 PMid:26474460 DOI: https://doi.org/10.18632/oncotarget.6098
Muhar AM, Putra A, Warli SM, Munir D. Hypoxia-mesenchymal stem cells inhibit intra-peritoneal adhesions formation by upregulation of the il-10 expression. Open Access Maced J Med Sci. 2019;7(23):3937-43. https://doi.org/10.3889/oamjms.2019.713 PMid:32165932 DOI: https://doi.org/10.3889/oamjms.2019.713
Bendas G, Borsig L. Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012. https://doi.org/10.1155/2012/676731 PMid:22505933 DOI: https://doi.org/10.1155/2012/676731
Staquicini DI, Rangel R, Guzman-Rojas L, Staquicini FI, Dobroff AS, Tarleton CA, et al. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci Rep. 2017;7(1):1-11. https://doi.org/10.1038/s41598-017-03470-w DOI: https://doi.org/10.1038/s41598-017-03470-w
Barberán S, Cebrià F. The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol. 2019;87:45-57. https://doi.org/10.1016/j.semcdb.2018.05.011 PMid:29775660 DOI: https://doi.org/10.1016/j.semcdb.2018.05.011
Jamaladdin S, Kelly RD, O’Regan L, Dovey OM, Hodson GE, Millard CJ, et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci USA. 2014;111(27):9840-5. https://doi.org/10.1073/pnas.1321330111 PMid:24958871 DOI: https://doi.org/10.1073/pnas.1321330111
Massard C, Deutsch E, Soria JC. Tumour stem cell-targeted treatment: Elimination or differentiation. Ann Oncol. 2006;17(11):1620-4. https://doi.org/10.1093/annonc/mdl074 PMid:16600978 DOI: https://doi.org/10.1093/annonc/mdl074
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20. https://doi.org/10.1186/s12929-018-0426-4 PMid:29506506 DOI: https://doi.org/10.1186/s12929-018-0426-4
Phi LT, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923. https://doi.org/10.1155/2018/5416923 PMid:29681949 DOI: https://doi.org/10.1155/2018/5416923
Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microb Biotechnol. 2011;4(6):687-99. PMid:21375717 DOI: https://doi.org/10.1111/j.1751-7915.2010.00221.x
Sa G, Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div. 2008;3:14. https://doi.org/10.1186/1747-1028-3-14 PMid:18834508 DOI: https://doi.org/10.1186/1747-1028-3-14
Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. https://doi.org/10.3390/ijms20051033 PMid:30818786 DOI: https://doi.org/10.3390/ijms20051033
Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta. 2008;1780(4):673-9. https://doi.org/10.1016/j.bbagen.2007.11.016 PMid:18178166 DOI: https://doi.org/10.1016/j.bbagen.2007.11.016
Zhou Q, Ye M, Lu Y, Zhang H, Chen Q, Huang S, et al. Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells. PLoS One. 2015;10(8):e0136694. https://doi.org/10.1371/journal.pone.0136694 PMid:26305906 DOI: https://doi.org/10.1371/journal.pone.0136694
Zhou QM, Sun Y, Lu YY, Zhang H, Chen QL, Su SB. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int. 2017;17(1):1-13. https://doi.org/10.1186/s12935-017-0453-3 PMid:28959140 DOI: https://doi.org/10.1186/s12935-017-0453-3
Putra A, Riwanto I, Putra ST, Wijaya I. Typhonium flagelliforme extract induce apoptosis in breast cancer stem cells by suppressing survivin. J Cancer Res Ther. 2020;16(6):1302-8.
Lee SH, Jaganath IB, Wang SM, Sekaran SD. Antimetastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines. PLoS One. 2011;6(6):e20994. https://doi.org/10.1371/journal.pone.0020994 PMid:21698198 DOI: https://doi.org/10.1371/journal.pone.0020994
Chen CY, Lin YS, Chen CH, Chen YJ. Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. J Biomed Sci. 2018;25(1):30. https://doi.org/10.1186/s12929-018-0430-8 PMid:29598816 DOI: https://doi.org/10.1186/s12929-018-0430-8
Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789-95. https://doi.org/10.1038/sj.bjc.6605551 PMid:20104230 DOI: https://doi.org/10.1038/sj.bjc.6605551
Abhold EL, Kiang A, Rahimy E, Kuo SZ, Wang-Rodriguez J, Lopez JP, et al. EGFR kinase promotes acquisition of stem cell-like properties: A potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS One. 2012;7(2):e32459. https://doi.org/10.1371/journal.pone.0032459 PMid:22384257 DOI: https://doi.org/10.1371/journal.pone.0032459
Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol. 2007;7(13):1659-67. https://doi.org/10.1016/j.intimp.2007.08.018 PMid:17996675 DOI: https://doi.org/10.1016/j.intimp.2007.08.018
Kabakov A, Yakimova A, Matchuk O. Molecular chaperones in cancer stem cells: Determinants of stemness and potential targets for antitumor therapy. Cells. 2020;9(4):892. https://doi.org/10.3390/cells9040892 PMid:32268506 DOI: https://doi.org/10.3390/cells9040892
Downloads
Additional Files
Published
How to Cite
License
Copyright (c) 2021 Dedy Hermansyah, Agung Putra, Delfitri Munir, Aznan Lelo, Nur Dina Amalina, Iffan Alif (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0