Experimental Study Comparing Structural Changes Induced by Biologic Versus Synthetic Mesh Implants in Nephropexy
DOI:
https://doi.org/10.3889/oamjms.2021.5944Keywords:
Extracellular matrix, Bovine-derived peritoneum implant, UltraPro mesh, Nephropexy, MorphometryAbstract
Background: The study suggests that the use of the extracellular bovine-derived peritoneum matrix as a new biological implant opens up new prospects for nephropexy.
Materials and Methods: Experimental nephropexy was performed in 64 white shorthaired adult rats, divided for 2 groups: extracellular bovine-derived peritoneum matrix, UltraPro mesh. Implants were 1,5*1,5cm per one animal. Observation periods were 7, 21, 30 and 180 days. The tissue was stain with H&E, Van Gieson’s with pikro-fuchin. Cellular infiltrate was evaluated by counting granulocytes, mononuclear cells, and foreign-body giant cells on five high-magnification images for each stained section (×400).
Results: The use of the extracellular bovine-derived peritoneum matrix induced less intense and less prolonged chronic inflammatory response, as well as intense production of new collagen fibers more similar to the native connective tissue in terms of their histologic structure. The UltraPro mesh induced moderately persistent chronic inflammatory response throughout the 6- month study period.
Conclusion: Histologic evaluation demonstrates high biocompatibility of both the extracellular bovine-derived peritoneum matrix, and the UltraPro mesh implants.The results of using new biological material are not worse than synthetic mesh. The data obtained justify further research of the extracellular bovine-derived peritoneum matrix as a plastic material for nephropexy.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Lopatkin NA. Urology: Textbook for Universities. 7th ed. Moscow: GEOTAR-MED; 2013. p. 162-5.
Nikonovich SG. The use of polypropylene mesh for fixing a pathologically mobile kidney. Med J. 2010;1:69-72.
Abatov NT, Abugaliyev KR, Badyrov RM, Ogay VB, Abatova AN, Assamidanov YM. Patent Registered in the Republic of Kazakhstan; 2019.
Shankaran V, Weber DJ, Reed RL, Luchette FA. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011;253(1):16-26. https://doi.org/10.1097/sla.0b013e3181f9b6e6 PMid:21135699 DOI: https://doi.org/10.1097/SLA.0b013e3181f9b6e6
GOST ISO 10993-1-2011 Biological Effect of Medical Devices. Part 6. Tests for Local Effects after Implantation; 2011.
Zheng F, Lin Y, Verbeken E, Claerhout F. Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol. 2004;191(6):1961- 70. https://doi.org/10.1016/j.ajog.2004.01.091 PMid:15592278 DOI: https://doi.org/10.1016/j.ajog.2004.01.091
Valentin JE, Badylak JS, McCabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am. 2006;88(12):2673-86. https://doi.org/10.2106/jbjs.e.01008 PMid:17142418 DOI: https://doi.org/10.2106/JBJS.E.01008
Junqueira LC, Cossermelli W, Brentani R. Differential staining of collagens type I, II and III by Sirius red and polarization microscopy. Arch Histol Jpn. 1978;41(3):267-74. https://doi.org/10.1679/aohc1950.41.267 PMid:82432 DOI: https://doi.org/10.1679/aohc1950.41.267
Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res. 2002;103(2):190-202. https://doi.org/10.1006/jsre.2001.6349 PMid:11922734 DOI: https://doi.org/10.1006/jsre.2001.6349
D’Acampora AJ, Joli FS, Tramonte R. Expanded polytetrafluoroethylene and polypropylene in the repairing of abdominal wall defects in Wistar rats. Comparative study. Acta Cir Bras. 2006;21(6):409-15. https://doi.org/10.1590/s0102-86502006000600010 PMid:17160254 DOI: https://doi.org/10.1590/S0102-86502006000600010
Bellon JM, Bujan J, Contreras L, Hernando A. Integration of biomaterials implanted into abdominal wall: Process of scar formation and macrophage response. Biomaterials. 1995;16(5):381-7. https://doi.org/10.1016/0142-9612(95)98855-8 PMid:7662823 DOI: https://doi.org/10.1016/0142-9612(95)98855-8
Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V. Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res. 2002;103(2):208-14. https://doi.org/10.1006/jsre.2002.6358 PMid:11922736 DOI: https://doi.org/10.1006/jsre.2002.6358
Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg. 2004;187(5A):11S-6S. PMid:15147986 DOI: https://doi.org/10.1016/S0002-9610(03)00296-4
Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am. 1997;77(3):509-28. https://doi.org/10.1016/s0039-6109(05)70566-1 PMid:9194878 DOI: https://doi.org/10.1016/S0039-6109(05)70566-1
Mandelbaum SH, di Santis EP, Mandelbaum MH. Cicatrization: current concepts and auxiliary resources.Part I. An Bras Dermatol. 2003;78:393-408. https://doi.org/10.1590/s0365-05962003000400002 DOI: https://doi.org/10.1590/S0365-05962003000400002
Franz MG. The biology of hernias and the abdominal wall. Hernia. 2006;10(6):462-71. PMid:17006625 DOI: https://doi.org/10.1007/s10029-006-0144-9
van Rijssel EJ, Brand R, Admiraal C, Smit I, Trimbos JB. Tissue reaction and surgical knots: The effect of suture size, knot configuration, and knot volume. Obstet Gynecol. 1989;74(1):64-8. PMid:2543937
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335-46. https://doi.org/10.1016/s0142-9612(00)00101-0 PMid:11055281 DOI: https://doi.org/10.1016/S0142-9612(00)00101-0
Downloads
Published
How to Cite
License
Copyright (c) 2021 Aigerim Nurkassiyevna Abatova , Maida Maskhapovna Tussupbekova, Nurkassi Tulepbergenovich Abatov, Ruslan Muratovich Badyrov, Yevgeniy Konstantinovich Kamyshanskiy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0