Exploring the Capability of Indonesia Natural Medicine Secondary Metabolite as Potential Inhibitors of SARS-CoV-2 Proteins to Prevent Virulence of COVID-19: In silico and Bioinformatic Approach
DOI:
https://doi.org/10.3889/oamjms.2021.5945Keywords:
Molecular docking, Bioinformatic, COVID-19, SARS-CoV2, Indonesia natural medicineAbstract
BACKGROUND: SARS-CoV-2 was causing COVID-19 disease resulting in many deaths and being a significant concern in the world today. There is an emergent need to search for possible medications for COVID-19 treatment. The key point to halt SARS-CoV-2 infection through inhibition of the virus-receptor interaction and stimulates the immune system. Utilization of the bioinformatic and in silico molecular docking a number of available medications might be proven to be effective in inhibiting SARS-CoV-2 main drug targets including the SARS-CoV2 spike glycoprotein, the 3CL protease SARS-CoV-2 active target, PD-ACE2, 2019-nCoV PLpro, and NF-kβ.
AIM: This present study was conducted to identify the potential target and molecular mechanism of the major compound on Alpinia galanga extract and Citrus sinensis (L.) extract in circumventing COVID-19 using a bioinformatics approach and in silico molecular docking.
RESULTS: Direct protein target of all secondary metabolite and the gene list from PubMed “Severe acute respiratory syndrome coronavirus 2” generated 2 genes (CCL2 and VEGFA) as potential therapeutics target genes (PTTG). The molecular docking was conducted by the Protein-Ligand Ant System (PLANTS) software. The results show that hesperidin, naringenin, and galangin have lower docking score for all five-protein target receptor compared with chloroquine and remdesivir. The lower docking score suggests a high affinity to bind the protein. Moreover, these compounds have a strong affinity in their inhibitory capacity for viral infection.
CONCLUSION: In general, this study’s findings show that the compound of Alpinia galanga extract dan Citrus sinensis (L.) extract exhibit the best potential as an inhibitor to the development of the SARS-CoV-2 and inhibited cytokine storm through inactivation NF-kβ _pathway.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6. PMid:32166607 DOI: https://doi.org/10.1007/s12098-020-03263-6
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-88. https://doi.org/10.1016/j.apsb.2020.02.008 PMid:32292689 DOI: https://doi.org/10.1016/j.apsb.2020.02.008
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Chong RE, et al. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med. 2020;18(1):257. https://doi.org/10.26434/chemrxiv.12037416.v1 PMid:32586380 DOI: https://doi.org/10.26434/chemrxiv.12037416.v1
Cavasotto CN, Di Filippo JI. In silico drug repurposing for COVID-19: Targeting SARS-CoV-2 proteins through docking and consensus ranking. Mol Inform. 2021;40(1):2000115. https://doi.org/10.1002/minf.202000115 DOI: https://doi.org/10.1002/minf.202000115
Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med. 2020;119(2):103670. https://doi.org/10.1016/j.compbiomed.2020.103670 PMid:3220923 DOI: https://doi.org/10.1016/j.compbiomed.2020.103670
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. https://doi.org/10.2174/157340911795677602 PMid:21534921 DOI: https://doi.org/10.2174/157340911795677602
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8. https://doi.org/10.1126/science.abb2762 PMid:32132184 DOI: https://doi.org/10.1126/science.abb2762
Rabi FA, Al Zoubi MS, Al-Nasser AD, Kasasbeh GA, Salameh DM. SARS-Cov-2 and coronavirus disease 2019: What we know so far. Pathogens. 2020;9(3):231. https://doi.org/10.3390/pathogens9030231 PMid:32245083 DOI: https://doi.org/10.3390/pathogens9030231
Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5):667-73. https://doi.org/10.1016/j.jiph.2020.03.019 PMid:32340833 DOI: https://doi.org/10.1016/j.jiph.2020.03.019
Wan Y, Shang J, Graham R, Baric RS, Li F. receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20. https://doi.org/10.1128/jvi.00127-20 PMid:31996437 DOI: https://doi.org/10.1128/JVI.00127-20
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90. https://doi.org/10.1007/s00134-020-05985-9 PMid:32125455 DOI: https://doi.org/10.1007/s00134-020-05985-9
Hall DC, Ji HF. A search for medications to treat COVID- 19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis. 2020;35(3):101646. https://doi.org/10.1016/j.tmaid.2020.101646 PMid:32294562 DOI: https://doi.org/10.1016/j.tmaid.2020.101646
Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 2020;39(3):198-216. https://doi. org/10.1007/s10930-020-09901-4 PMid:32447571 DOI: https://doi.org/10.1007/s10930-020-09901-4
Salvatori G, Luberto L, Maffei M, Aurisicchio L, Aurisicchio L, Roscilli G, et al. SARS-CoV-2 spike protein: An optimal immunological target for vaccines. J Transl Med. 2020;18(1):222. https://doi.org/10.1186/s12967-020-02392-y DOI: https://doi.org/10.1186/s12967-020-02392-y
Muhammed Y. Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment. Biosaf Heal. 2020;2(4):210-6. https://doi.org/10.1016/j.bsheal.2020.07.002 PMid:32838282 DOI: https://doi.org/10.1016/j.bsheal.2020.07.002
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-68. PMid:32353859
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites. 2019;9(11):258. https://doi.org/10.3390/metabo9110258 PMid:31683833 DOI: https://doi.org/10.3390/metabo9110258
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Neurol. 2014;4(1):1777. https://doi.org/10.3389/fphar.2013.00177 PMid:24454289 DOI: https://doi.org/10.3389/fphar.2013.00177
Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018;23(8):1899. https://doi.org/10.3390/molecules23081899 PMid:30061498 DOI: https://doi.org/10.3390/molecules23081899
Sambantham S, Radha M, Paramasivam A, Anandan B, Malathi R, Chandra SR, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14(7):4347-52. https://doi.org/10.7314/apjcp.2013.14.7.4347 PMid:23992001 DOI: https://doi.org/10.7314/APJCP.2013.14.7.4347
Mee CJ, Farquhar MJ, Harris HJ, Ramma W, Ahmed A, Maurel P, et al. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner. Gastroenterology. 2016;138(3):1134-42. https://doi.org/10.1053/j.gastro.2009.11.047 PMid:19944696 DOI: https://doi.org/10.1053/j.gastro.2009.11.047
Alkharsah KR. VEGF upregulation in viral infections and its possible therapeutic implications. Int J Mol Sci. 2018;19(6):1642. https://doi.org/10.3390/ijms19061642 PMid:29865171 DOI: https://doi.org/10.3390/ijms19061642
Turkia M. COVID-19 as an endothelial disease and its relationship to vascular endothelial growth factor (VEGF) and iodide. SSRN Electron J. 2020; Jun (03). https://doi.org/10.2139/ssrn.3604987 DOI: https://doi.org/10.2139/ssrn.3604987
Sabbatucci M, Covino AA, Purificato C, Mallano A, Federico M, Lu J, et al. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology. 2015;12(1):4. https://doi.org/10.1186/s12977-014-0132-6 PMid:25608886 DOI: https://doi.org/10.1186/s12977-014-0132-6
Angela Covino D, Sabbatucci M, Fantuzzi L. The CCL2/CCR2 axis in the pathogenesis of HIV-1 infection: A new cellular target for therapy? Curr Drug Targets. 2015;17(1):76-110. https://doi.org/10.2174/138945011701151217110917 PMid:26687605 DOI: https://doi.org/10.2174/138945011701151217110917
Downloads
Published
How to Cite
License
Copyright (c) 2021 Bambang Cahyono, Nur Dina Amalina, Meiny Suzery, Damar Nur Wahyu Bima (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0