Efficacof Cinnamon Extract (Cinnamomum burmannii) as Supplementation in Lir-psychotic-induced Rats through Oxidative Stress Regulation in Neuronal Cells

Authors

  • Rachmat Hidayat Department of Biology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
  • Patricia Wulandari Cattleya Mental Health Center, Palembang, Indonesia
  • Carla Raymondalexas Marchira Department of Psychiatry, Faculty of Medicine, Health Science and Nursing Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Budi Pratiti Department of Psychiatry, Faculty of Medicine, Health Science and Nursing Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2021.5977

Keywords:

antioxidants, phenols, flavonoid, malondialdehyde, cinnamon

Abstract

BACKGROUND: Cinnamon is a plant that is often found in Indonesia and is rich in secondary metabolites such as flavonoids, phenols, tannins, and alkaloids. Flavonoids and phenols are very potential as natural antioxidants to suppress various oxidant activities, including oxidant activity that occurs in the hippocampus, which is the underlying psychotic disorder.

AIM: This study was aimed to explore the potential of cinnamon extract (CE) on psychotic symptoms.

METHODS: Cinnamon simplicia was obtained from the Research and Testing Center for Traditional Medicine, Tawangmangu, Central Java, Indonesia. The extraction of cinnamon was carried out using the maceration method. The animals were subjected to lir-psychotic induction by intraperitoneal injection with ketamine (30 mg/kg BW) for 5 days. The rats were grouped into six groups; each group contained five animals; normal control group, a lir-psychotic group without treatment, lir-psychotic group with haloperidol, lir-psychotic with CE (25 mg/kg BW, 50 mg/kg BW, and 100 mg/kg BW). Oxidative stress in experimental animals was measured by evaluating malondialdehyde (MDA) expression in the brain tissue using immunohistochemical tests.

RESULTS: There were differences in clinical symptoms of psychotic disorder in the animal model between before intervention with CE supplementation and after the intervention. The higher the CE dose administered, the better the improvement in psychotic symptoms seen in the psychotic-induced rats. CE supplementation could reduce MDA expression in the hippocampus. This suggests that there was an optimal significance of cinnamon supplementation in reducing oxidative stress from the hippocampus.

CONCLUSION: CE was effective in improving psychotic symptoms in lir-psychotic rats through regulation of oxidative stress in neuronal cells.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Scheepers FE, Mul J, Boer F, Hoogendijk WJ. Psychosis as an evolutionary adaptive mechanism to changing environments. Front Psychiatry. 2018;9:237. https://dx.doi.org/10.3389/ fpsyt.2018.00237 PMid:29922188 DOI: https://doi.org/10.3389/fpsyt.2018.00237

Kustner BM, Martin C, Pastor L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLos One. 2018;13(4):e0195687. https://dx.doi.org/10.1371/journal.pone.0195687 PMid:29649252 DOI: https://doi.org/10.1371/journal.pone.0195687

Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9(2):301- 12. https://dx.doi.org/10.2174/157015911795596595 PMid:22131939 DOI: https://doi.org/10.2174/157015911795596595

Srinivasan S, Bettella F, Mattingsdal M, Wang Y, Wietoelar A, Schork AJ, et al. Genetic markers of human evolution are enriched in schizophrenia. Biol Psychiatry. 2016;80(4):284-92. https://dx.doi.org/10.1016/j.biopsych.2015.10.009 PMid:26681495 DOI: https://doi.org/10.1016/j.biopsych.2015.10.009

Othmen LB, Mechri A, Fendri C, Bost M, Chazot G, Gaha L, et al. Altered antioxidant defense system in clinically stable patients with schizophrenia and their unaffected siblings. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(1):155-9. https://doi.org/10.1016/j.pnpbp.2007.08.003 PMid:17804133 DOI: https://doi.org/10.1016/j.pnpbp.2007.08.003

Berger GE, Smesny S, Amminger GP. Bioactive lipids in schizophrenia. Int Rev Psychiatry. 2006;18(2):85-98. https://doi.org/10.1080/09540260600583072 PMid:16777663 DOI: https://doi.org/10.1080/09540260600583072

Wulandari P. Biomolecular aspects of schizophrenia. Biosci Med. 2019;3(2):38-43. https://dx.doi.org/10.32539/bsm.v3i2.88 DOI: https://doi.org/10.32539/bsm.v3i2.88

Ciobica A, Hritcu L, Artenie V, Stoica B, Bild V. Effects of 6-OHDA infusion into the hypothalamic paraventricular nucleus in mediating stress-induced behavioral responses and oxidative damage in rats. Acta Endocrinol. 2009;5:425-36.

Dadheech G, Mishra S, Gautam S, Sharma P. Evaluation of antioxidant deficit in schizophrenia. Indian J Psychiatry. 2008;50(1):16-20. https://dx.doi.org/10.4103/0019-5545.39753 PMid:19771301 DOI: https://doi.org/10.4103/0019-5545.39753

Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res. 2008;189(1):170-9. https://doi.org/10.1016/j.bbr.2007.12.032 PMid:18299157 DOI: https://doi.org/10.1016/j.bbr.2007.12.032

Vangalapati M, Sree SN, Surya PD, Avanigadda S. A review on pharmacological activities and clinical effects of cinnamon species. Res J Pharm Biol Chem Sci. 2012;3(1):653-63.

Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162-94. https://dx.doi.org/10.1111/j.1476-5381.2011.01386.x PMid:21449915 DOI: https://doi.org/10.1111/j.1476-5381.2011.01386.x

Sofowora A. Screening plants for bioactive agents. In: Medicinal Plants and Traditional Medicinal in Africa. 2nd ed. Ibadan, Nigeria: Spectrum Books Ltd.; 1933. p. 134-56.

Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685-8. DOI: https://doi.org/10.5897/AJB2005.000-3127

Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 2nd ed. New Delhi: Springer Private Ltd.; 2005.

McCrea CE, West SG, Kris-Etherton PM, Lambert JD, Gaugler TL, Teeter DL, et al. Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: Results of a randomized crossover study and in vitro experiments. J Transl Med. 2015;13:7. https://dx.doi.org/10.1186/s12967-014-0360-5 PMid:25592751 DOI: https://doi.org/10.1186/s12967-014-0360-5

Grignon S, Chianetta JM. Assessment of malondialdehyde levels in schizophrenia: a meta-analysis and some methodological considerations. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):365-9. https://doi.org/10.1016/j.pnpbp.2006.09.012 DOI: https://doi.org/10.1016/j.pnpbp.2006.09.012

Greilberger J, Koidl C, Greilberger M. Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free Radic Res. 2008;42(7):633-8. PMid:18654878 DOI: https://doi.org/10.1080/10715760802255764

Fine AM. Oligomeric proanthocyanidin complexes: History, structure, and phytopharmaceutical applications. Altern Med Rev. 2000;5(2):144-51. PMid:10767669

Grima G, Benz B, Parpura V, Cuenod M, Do KQ. Dopamine-induced oxidative stress in neurons with glutathione deficit: Implication for schizophrenia. Schizophr Res. 2003;62(3):213-24. PMid:12837517 DOI: https://doi.org/10.1016/S0920-9964(02)00405-X

Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging. 2001;18(9):685-716. DOI: https://doi.org/10.2165/00002512-200118090-00004

Panserga EG, Kristanto CS, Pratiti B, Wulandari P. Haloperidol and risperidone induce apoptosis in neuronal cell: In vivo study. Sci Psychiatr. 2020;1(1):14-9. https://doi.org/10.37275/scipsy.v1i1 DOI: https://doi.org/10.37275/scipsy.v1i1

Hermida-Ameijeiras A, Méndez-Alvarez E, Sánchez-Iglesias S, Sanmartín-Suárez C, Soto-Otero R. Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int. 2004;45(1):103-16. https://doi.org/10.1016/j.neuint.2003.11.018 PMid:15082228 DOI: https://doi.org/10.1016/j.neuint.2003.11.018

Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, et al. Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence. Proc Natl Acad Sci U S A. 2007;104(42):16621-6. https://doi.org/10.1073/ pnas.0706778104 PMid:17921251 DOI: https://doi.org/10.1073/pnas.0706778104

Hashimoto K. Glycine transport inhibitors for the treatment of schizophrenia. Open Med Chem J. 2010;4:10-9. https://dx.doi.org/10.2174/1874104501004010010 PMid:21253021 DOI: https://doi.org/10.2174/1874104501004010010

Lang UE, Puls I, Müller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem. 2007;20(6):687-702. PMid:17982252 DOI: https://doi.org/10.1159/000110430

Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem. 2009;109(Suppl 1):133-8. PMid:19393019 DOI: https://doi.org/10.1111/j.1471-4159.2009.05897.x

Pazvantoglu O, Selek S, Okay IT, Sengul C, Karabekiroglu K, Dilbaz N, et al. Oxidative mechanisms in schizophrenia and their relationship with illness subtype and symptom profile. Psychiatry Clin Neurosci. 2009;63(5):693-700. PMid:19788631 DOI: https://doi.org/10.1111/j.1440-1819.2009.02015.x

Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci. 2002;5(5):291- 309. https://doi.org/10.1080/1028415021000033767 PMid:12385592 DOI: https://doi.org/10.1080/1028415021000033767

Uribe E, Landaeta J, Wix R, Eblen A. Memantine Reverses Social Withdrawal induced by Ketamine in Rats. Exp Neurobiol. 2013;22(1):18-22. PMid:23585718 DOI: https://doi.org/10.5607/en.2013.22.1.18

Virit O, Altindag A, Yumru M, Dalkilic A, Savas HA, Selek S, et al. A defect in the antioxidant defense system in schizophrenia. Neuropsychobiology. 2009;60(2):87-93. PMid:19776652 DOI: https://doi.org/10.1159/000239684

Ranasinghe P. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacogn Res. 2012;4(2):73-9. http://dx.doi.org/10.4103/0974-8490.94719 PMid:22518078 DOI: https://doi.org/10.4103/0974-8490.94719

Yao Y, Huang H, Yang Y, Guo J. Cinnamic aldehyde treatment alleviates chronic unexpected stress-induced depressive-like behaviors via targeting cyclooxygenase-2 in mid-aged rats. J Ethnopharmacol. 2013;162:97-103. https://doi.org/10.1016/j.jep.2014.12.047 PMid:25556926 DOI: https://doi.org/10.1016/j.jep.2014.12.047

Downloads

Published

2021-04-14

How to Cite

1.
Hidayat R, Wulandari P, Marchira CR, Pratiti B. Efficacof Cinnamon Extract (Cinnamomum burmannii) as Supplementation in Lir-psychotic-induced Rats through Oxidative Stress Regulation in Neuronal Cells. Open Access Maced J Med Sci [Internet]. 2021 Apr. 14 [cited 2024 Nov. 21];9(A):177-82. Available from: https://oamjms.eu/index.php/mjms/article/view/5977