Evaluation of Antioxidant Activity of Botto-Botto Leaf Fraction (Chromolaena Odorata L.) Using DPPH and ABTS Methods


  • Karlina Amir Tahir Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Alauddin Makassar, Indonesia; Postgraduate Doctoral Program, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
  • Upik A. Miskad Department of Anatomical Pathology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
  • Khairuddin Djawad Department of Dermatology and Venereology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
  • Sartini Djide Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia https://orcid.org/0000-0001-8155-4467
  • Khaerani Khaerani Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Alauddin Makassar, Indonesia https://orcid.org/0000-0001-8648-9676
  • Maulita Indrisari Postgraduate Doctoral Program, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia




Antioxidant, Botto-Botto (Chromolaena odorata L.), DPPH, ABTS


BACKGROUND: Antioxidants are substances that can inhibit the oxidation process, so that they have a protective effect on cells from the dangers of free radicals. One of the plants that has activity as natural antioxidants is Botto-Botto leaves (Chromolaena odorata L.).

AIM: This study aims to determine the antioxidant activity of the Botto-Botto leaf fraction using the DPPH and ABTS methods.

METHODS: The leaves of Botto-Botto (Chromolaena odorata L.) obtained from Takalar District, South Sulawesi are sorted, dried and pollinated. The powder was immersed in 70% ethanol solvent and sonicated. Furthermore, the extraction was carried out by maceration method with 70% ethanol solvent and fractionated using water, n-hexane, and n-butanol as solvents and dried. The fractionation results were continued for antioxidant testing using the DPPH and ABTS methods.

RESULTS: The n-butanol fraction of Botto-Botto leaves had the highest antioxidant activity, namely the strong active category. In the DPPH and ABTS methods, the n-butanol fraction has IC50 values of 33.535 μg / mL and 60.885 μg / mL, respectively.

CONCLUSION: The DPPH and ABTS methods, the n-butanol fraction of botto-botto leaves have strong antioxidant activity compared to other fractions, namely the water fraction and the n-hexane fraction.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Bernhoft A. A brief review on bioactive compounds in plants. In: Bioactive Compounds in Plants-Benefits and Risks for Man and Animals. Vol. 50. The Norwegian Academy of Science and Letters; 2010. p. 11-7.

Puri B, Hall A. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants. Boca Raton: CRC Press; 1998.

Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1-10. https://doi.org/10.4314/ajtcam.v8i1.60483 PMid:22238476 DOI: https://doi.org/10.4314/ajtcam.v8i1.60483

Das S, Bora N, Rohman MA, Sharma R, Jha AN, Roy AS. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Phys Chem Chem Phys. 2018;20(33):21668-84. https://doi.org/10.1039/c8cp02760a DOI: https://doi.org/10.1039/C8CP02760A

Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci. 2015;16(12):29592-630. https://doi.org/10.3390/ijms161226183 PMid:26690422 DOI: https://doi.org/10.3390/ijms161226183

Maesaroh K, Kurnia D, Anshori JA. Comparison of the antioxidant activity test methods of DPPH, FRAP and FIC against ascorbic acid, gallic acid and quercetin. Chim Nat Acta. 2018;6(2):93-100. https://doi.org/10.24198/cna.v6.n2.19049 DOI: https://doi.org/10.24198/cna.v6.n2.19049

Zachariades C, Day M, Muniappan R, Reddy GV. Chromolaena odorata (L.) king and robinson (Asteraceae). In: Biological Control of Tropical Weeds using Arthropods. Cambridge: Cambridge University Press; 2009. p. 130-62. https://doi.org/10.1017/cbo9780511576348.008 DOI: https://doi.org/10.1017/CBO9780511576348.008

Adedapo AA, Oyagbemi AA, Fagbohun OA, Omobowale TO, Yakubu MA. Evaluation of the anticancer properties of the methanol leaf extract of Chromolaena odorata on HT-29 cell line. J Pharmacogn Phytochem. 2016;5(2):52.

Parameswari G, Suriyavathana M. In vitro antioxidant activity of Chromolaena odorata (L.) King and Robinson. Int Res J Pharm. 2012;3(11):187-92.

Pitakpawasutthi Y, Thitikornpong W, Palanuvej C, Ruangrungsi N. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves. J Adv Pharm Technol Res. 2016;7(2):37-42. https://doi.org/10.4103/2231-4040.177200 PMid:27144150 DOI: https://doi.org/10.4103/2231-4040.177200

Usunomena U, Efosa EG. Phytochemical analysis, mineral composition and in vitro antioxidant activities of Chromolaena odorata leaves. ARC J Pharm Sci. 2016;2(2):16-20. https://doi.org/10.20431/2455-1538.0202003 DOI: https://doi.org/10.20431/2455-1538.0202003

Mhamdi A, Breusegem FV. Reactive oxygen species in plant development. Development. 2018;145(15):dev164376. https://doi.org/10.1242/dev.164376 PMid:30093413 DOI: https://doi.org/10.1242/dev.164376

Kinnula VL, Crapo JD. Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med. 2004;36(6):718 44. https://doi.org/10.1016/j.freeradbiomed.2003.12.010 PMid:14990352 DOI: https://doi.org/10.1016/j.freeradbiomed.2003.12.010

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-83. https://doi.org/10.1038/s41580-020-0230-3 PMid:32231263 DOI: https://doi.org/10.1038/s41580-020-0230-3

Slater TF. Free radical mechanisms in tissue injury. In: Cell Function and Disease. Berlin: Springer; 1988. p. 209-18. DOI: https://doi.org/10.1007/978-1-4613-0813-3_18

Sridhar K, Charles AL. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019;275:41-9. https://doi.org/10.1016/j.foodchem.2018.09.040 PMid:30724215 DOI: https://doi.org/10.1016/j.foodchem.2018.09.040

Yeo J, Shahidi F. Revisiting DPPH (2, 2-diphenyl-1- picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations. J Food Bioact. 2019;7: 36-42. https://doi.org/10.31665/jfb.2019.7196 DOI: https://doi.org/10.31665/JFB.2019.7196

Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26(2):211-9.

Handayany GN, Umar I, Ismail I. Formulation and test of the antioxidant effectiveness of the botto’-botto ‘(Chromolaena odorata L.) leaf ethanol extract cream using the DPPH method. J Kesehatan. 2018;11(2):86– 90. https://doi.org/10.24252/kesehatan.v11i2.5944 DOI: https://doi.org/10.24252/kesehatan.v11i2.5944

Rusdi M, Haeria H, Hamzah N, Rauf A, Amriani F. Antiproliferation potential of botto-botto (Chromolaena odorata L.) leaves methanol extract fraction against HeLa cell line. Ad-Dawaa’ J Pharm Sci. 2020;3(1):83-9.




How to Cite

Tahir KA, Miskad UA, Djawad K, Djide S, Khaerani K, Indrisari M. Evaluation of Antioxidant Activity of Botto-Botto Leaf Fraction (Chromolaena Odorata L.) Using DPPH and ABTS Methods. Open Access Maced J Med Sci [Internet]. 2021 Apr. 22 [cited 2024 Apr. 23];9(A):183-8. Available from: https://oamjms.eu/index.php/mjms/article/view/5982

Most read articles by the same author(s)

1 2 > >>