The Effects of Polymorphisms in One-carbon Metabolism Genes on Manifestation of Ichthyosis Vulgaris

Authors

  • Olena Fedota Department of Obstetrics and Gynecology, School of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Mr. Iurii Sadovnychenko Department of Obstetrics and Gynecology, School of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; Department of Medical Biology, 5th Faculty of Foreign Students Training, Kharkiv National Medical University, Kharkiv, Ukraine https://orcid.org/0000-0003-2453-9863
  • Lilia Chorna Genetic Research Laboratory, Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine https://orcid.org/0000-0003-3357-1574
  • Larysa Roshcheniuk Department of Dermatology, Venereology and AIDS, 2nd Medical Faculty, Kharkiv National Medical University, Kharkiv, Ukraine; Regional Clinical Dispensary for Skin and Venereal Diseases no. 1, Kharkiv, Ukraine
  • Vitalii Vorontsov Regional Clinical Dispensary for Skin and Venereal Diseases no. 1, Kharkiv, Ukraine
  • Pavlo Ryzhko Regional Clinical Dispensary for Skin and Venereal Diseases no. 1, Kharkiv, Ukraine
  • Ivanna Haybonyuk Genetic Research Laboratory, Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine https://orcid.org/0000-0002-4403-6166
  • Serhii Belyaev Department of Genetics, Obstetrics, Gynecology and Fetal Medicine, Faculty of General Practice–Family Medicine, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine https://orcid.org/0000-0002-9597-1541
  • Igor Belozorov Department of Surgical Diseases, Operative Surgery and Topographical Anatomy, School of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
  • Halyna Makukh Genetic Research Laboratory, Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv, Ukraine https://orcid.org/0000-0001-7749-5353

DOI:

https://doi.org/10.3889/oamjms.2021.6004

Keywords:

Ichthyosis vulgaris, Filaggrin mutations, One-carbon metabolism polymorphisms

Abstract

BACKGROUND: Ichthyosis vulgaris is the most common type of Mendelian disorders of cornification, caused by loss-of-function mutations in the gene encoding epidermal protein filaggrin (FLG), namely R501X and 2282del4. FLG 2282del4 mutation in heterozygotes is incompletely penetrant. Polymorphisms in one-carbon metabolism genes could be associated with clinical manifestation of ichthyosis vulgaris.

AIM: The purpose of the present study was to analyze the effects of MTHFR, MTR and MTRR polymorphisms in patients with ichthyosis vulgaris.

METHODS: 31 patients with ichthyosis vulgaris, 7 their FLG heterozygous relatives without symptoms of disorder, and 150 healthy controls were enrolled in study. FLG null mutations —R501X (rs61816761) and 2282del4 (rs558269137) — and one-carbon metabolism gene polymorphisms — MTHFR C677T (rs1801133), MTHFR A1298C (rs1801131), MTR A2756G (rs1805087) and MTRR A66G (rs1801394) — were analyzed by a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay.

RESULTS: Among patients with ichthyosis, heterozygous for FLG 2282del4 mutation, the distributions of genotypes for folate metabolism genes were: MTHFR C677T CC:CT:TT —29.4%:70.6%:0.0%; MTHFR A1298C AA:AC:CC — 52.9%:47.1%:0.0%; MTR A2756G AA:AG:GG — 70.3%:23.5%:5.9%; MTRR A66G AA:AG:GG — 23.4%:52.9%:23.5%. The frequencies of MTR 2756AA and MTRR 66GG genotypes were 1.4–1.6 times higher in affected individuals heterozygous for 2282del4 than in patients with other FLG genotypes. In affected 2282del4 heterozygotes, the frequency of MTR 2756AA genotype was 1.6 times greater than in healthy controls (p<0.01). The strongest association was found between MTHFR 677CT/MTHFR 1298AA/MTR 2756AA/MTRR 66AG genotype and ichthyosis — OR=11.23 (95% CI 2.51−50.21, p=0.002).

CONCLUSIONS: Various genotypes of one-carbon metabolism genes increase the risk of ichthyosis in heterozygotes for the FLG 2282del4 mutation (OR 2.799‑11.231). The most probable predisposing genotype is 677CT/1298AA/2756AA+AG/66AG.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789-858. https://doi.org/10.1016/S0140-6736(18)32279-7 PMid:30496104 DOI: https://doi.org/10.1016/S0140-6736(18)32279-7

Brown SJ, Relton CL, Liao H, Zhao Y, Sandilands A, Wilson IJ, et al. Filaggrin null mutations and childhood atopic eczema: A population-based case-control study. J Allergy Clin Immunol. 2008;121(4):940-6. https://doi.org/10.1016/j.jaci.2008.01.013 PMid:18313126 DOI: https://doi.org/10.1016/j.jaci.2008.01.013

Brown SJ, McLean WH. One remarkable molecule: Filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751-62. https:/doi.org/10.1038/jid.2011.393 PMid:22158554 DOI: https://doi.org/10.1038/jid.2011.393

Hackl EV, Berest VP, Gatash SV. Effect of cholesterol content on gramicidin S-induced hemolysis of erythrocytes. Int J Pept Res Ther. 2012;18(2):163-70. https:/doi.org/10.1007/s10989-012-9289-9 DOI: https://doi.org/10.1007/s10989-012-9289-9

Kezic S, Jakasa I. Filaggrin and skin barrier function. Curr Probl Dermatol. 2016;49:1-7. https://doi.org/10.1159/000441539 PMid:26844893 DOI: https://doi.org/10.1159/000441539

Popov M, Lyadova T, Volobuyeva O, Shepileva N, Kozlov A, Sorokina O. Cytokine production peculiarities in different forms of Epstein-Barr virus infection. Georgian Med News. 2017;2(263):55-9. PMid:28452728

Thyssen JP, Maibach HI, editors. Filaggrin: Basic Science, Epidemiology, Clinical Aspects and Management. Heidelberg: Springer; 2014. p. 373. DOI: https://doi.org/10.1007/978-3-642-54379-1

Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38(3):337-42. https:/doi.org/10.1038/ng1743 PMid:16444271 DOI: https://doi.org/10.1038/ng1743

Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-6. https:/doi.org/10.1038/ng1767 PMid:16550169

Brown SJ, Relton CL, Liao H, Zhao Y, Sandilands A, McLean WHI, et al. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: Further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br J Dermatol. 2009;161(4):884-9. https:/doi.org/10.1111/j.1365-2133.2009.09339.x PMid:19681860. DOI: https://doi.org/10.1111/j.1365-2133.2009.09339.x

Ziyab AH, Karmaus W, Holloway JW, Zhang H, Ewart S, Arshad SH. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol. 2013;27:e420-3. https:/doi.org/10.1111/jdv.12000 PMid:23003573 DOI: https://doi.org/10.1111/jdv.12000

Bin L, Leung DY. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol. 2016;12:52. https://doi.org/10.1186/s13223-016-0158-5 PMid:27777593 DOI: https://doi.org/10.1186/s13223-016-0158-5

Lee J, Jang A, Seo SJ, Myung SC. Epigenetic regulation of filaggrin gene expression in human epidermal keratinocytes. Ann Dermatol. 2020;32(2):122-9. https://doi.org/10.5021/ad.2020.32.2.122 DOI: https://doi.org/10.5021/ad.2020.32.2.122

Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: A review of molecular mechanisms and the evidence for folate’s role. Adv Nutr. 2012;3(1):21-38. https://doi.org/10.3945/an.111.000992 PMid:22332098 DOI: https://doi.org/10.3945/an.111.000992

Fedota AM, Solodyankin AS, Ryzhko PP, Roshenyuk LV, Vorontsov VM, Solodyankina EA. С677T polymorphism of MTHFR gene ichthyosis patients. Bull Probl Biol Med. 2011;2(1):78-81.

Nazki FH, Sameer AS, Ganaie BA. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533(1):11-20. https://doi.org/10.1016/j.gene.2013.09.063 PMid:24091066 DOI: https://doi.org/10.1016/j.gene.2013.09.063

Borowczyk K, Suliburska J, Jakubowski H. Demethylation of methionine and keratin damage in human hair. Amino Acids. 2018;50:537-46. https://doi.org/10.1007/s00726-018-2545-3 PMid:29480334 DOI: https://doi.org/10.1007/s00726-018-2545-3

Borowczyk K, Wróblewski J, Suliburska J, Akahoshi N, Ishii I, Jakubowski H. Mutations in homocysteine metabolism genes increase keratin N-homocysteinylation and damage in mice. Int J Genomics. 2018;2018:7570850. https://doi.org/10.1155/2018/7570850 PMid:30345292 DOI: https://doi.org/10.1155/2018/7570850

Cristalli CP, Zannini C, Comai G, Baraldi O, Cuna V, Cappuccilli M, et al.·Methylenetetrahydrofolate reductase, MTHFR, polymorphisms and predisposition to different multifactorial disorders. Genes Genom. 2017;39:689-99. https://doi.org/10.1007/s13258-017-0552-5 DOI: https://doi.org/10.1007/s13258-017-0552-5

Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr. 2019;6:49. https://doi.org/10.3389/fnut.2019.00049 PMid:31069230 DOI: https://doi.org/10.3389/fnut.2019.00049

Rossokha ZI, Kiryachenko SP, Gorovenko NJ. The role of MTHFR, MTRR, MTR1 intergenic interaction in the development of folate metabolism disturbance in patients with reproductive disorders. Ukrain Med J. 2018;2(3):1-5. DOI: https://doi.org/10.32471/umj.1680-3051.125.126970

Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111-3. https://doi.org/10.1038/ng0595-111 PMid:7647779 DOI: https://doi.org/10.1038/ng0595-111

van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural tube defects? Am J Hum Genet. 1998;62(5):1044-51. https://doi.org/10.1086/301825 PMid:9545395 DOI: https://doi.org/10.1086/301825

Matsuo K, Suzuki R, Hamajima N, Ogura M, Kagami Y, Taji H, et al. Association between polymorphisms of folate-and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood. 2001;97(10):3205-9. https://doi.org/10.1182/blood.v97.10.3205 PMid:11342450 DOI: https://doi.org/10.1182/blood.V97.10.3205

Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (Vitamin B12) increases risk for spina bifida. Mol Genet Metab. 1999;67(4):317-23. https://doi.org/10.1006/mgme.1999.2879 PMid:10444342 DOI: https://doi.org/10.1006/mgme.1999.2879

Blanchard C, Stucke EM, Burwinkel K, Caldwell JM, Collins MH, Ahrens A, et al. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J Immunol. 2010;184(7):4033-41. https://doi.org/10.4049/jimmunol.0903069 PMid:20208004 DOI: https://doi.org/10.4049/jimmunol.0903069

Chorna LB, Makukh HV, Akopyan HR, Zastavna DV, Prokopchuk NM. Analysis of MTHFR, MTR, MTRR genetic variations and FV and FII genesmutationsofcoagulation factors amongwomen with recurrent pregnancy losses. J VN Karazin Kharkiv Natl Univ Biol. 2011;13(947):118-24.

Yu L, Li T, Robertson Z, Dean J, Gu NF, Feng GY, et al. No association between polymorphisms of methylenetetrahydrofolate reductase gene and schizophrenia in both Chinese and Scottish populations. Mol Psychiatry. 2004;9(12):1063-5. https://doi.org/10.1038/sj.mp.4001566 PMid:15289817 DOI: https://doi.org/10.1038/sj.mp.4001566

Theodoratou E, Farrington SM, Tenesa A, McNeill G, Cetnarskyj R, Barnetson RA, et al. Dietary Vitamin B6 intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(1):171-82. https://doi.org/10.1158/1055-9965.EPI-07-0621 PMid:18199722 DOI: https://doi.org/10.1158/1055-9965.EPI-07-0621

Kokotas H, Grigoriadou M, Mikkelsen M, Giannoulia- Karantana A, Petersen MB. Investigating the impact of the Down syndrome related common MTHFR 677C>T polymorphism in the Danish population. Dis Markers. 2009;27(6):279-85. https://doi.org/10.3233/DMA-2009-0673 PMid:20075510 DOI: https://doi.org/10.1155/2009/725614

Bathum L, von Bornemann Hjelmborg J, Christiansen L, McGue M, Jeune B, Christensen K. Methylenetetrahydrofolate reductase 677C>T and methionine synthase 2756A>G mutations: No impact on survival, cognitive functioning, or cognitive decline in nonagenarians. J Gerontol A Biol Sci Med Sci. 2007;62A(2):196-201. https://doi.org/10.1093/gerona/62.2.196 PMid:17339646 DOI: https://doi.org/10.1093/gerona/62.2.196

Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lönn S, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1195-202. https://doi.org/10.1158/1055-9965.EPI-07-2733 PMid:18483342 DOI: https://doi.org/10.1158/1055-9965.EPI-07-2733

Relton CL, Wilding CS, Laffling AJ, Jonas PA, Lynch SA, Tawn EJ, et al. Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. Med Genet. 2004;41(4):256-60. https://doi.org/10.1136/jmg.2003.010694 PMid:15060097 DOI: https://doi.org/10.1136/jmg.2003.010694

Botto LD, Yang Q. 5, 10-methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. Am J Epidemiol. 2000;151(9):862-77. https://doi.org/10.1093/ oxfordjournals.aje.a010290 PMid:10791559 DOI: https://doi.org/10.1093/oxfordjournals.aje.a010290

Mills JL, Molloy AM, Parle-McDermott A, Troendle JF, Brody LC, Conley MR, et al. Folate-related gene polymorphisms as risk factors for cleft lip and cleft palate. Birth Defects Res A Clin Mol Teratol. 2008;82(9):636-43. https://doi.org/10.1002/bdra.20491 PMid:18661527 DOI: https://doi.org/10.1002/bdra.20491

O’Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, Conley M, et al. Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab. 2005;85(3):220-7. https://doi.org/10.1016/j.ymgme.2005.02.003 PMid:15979034 DOI: https://doi.org/10.1016/j.ymgme.2005.02.003

Seremak-Mrozikiewicz A, Barlik M, Borowczak P, Kurzawińska G, Kraśnik W, Nowocień G, et al. The frequency of 677C>T polymorphism of MTHFR gene in the Polish population. Arch Perinat Med. 2013;19(1):12-8.

Nowak I, Bylińska A, Wilczyńska K, Wiśniewski A, Malinowski A, Wilczyński JR, et al. The methylenetetrahydrofolate reductase c.c.677 C>T and c.c.1298 A>C polymorphisms in reproductive failures: Experience from an RSA and RIF study on a Polish population. PLoS One. 2017;12(10):e0186022. https://doi.org/10.1371/journal.pone.0186022 PMid:29073227 DOI: https://doi.org/10.1371/journal.pone.0186022

Seremak-Mrozikiewicz A, Bogacz A, Deka-Pawlik A, Klejewski A, Wolski H, Drews K, et al. The polymorphisms of methionine synthase (MTR) and methionine synthase reductase (MTRR) genes in pathogenesis of preeclampsia. J Matern Fetal Neonatal Med. 2017;30(20):1-17. https://doi.org/10.1080/14767058.2016.1254183 PMid:27806663 DOI: https://doi.org/10.1080/14767058.2016.1254183

Kloss M, Wiest T, Hyrenbach S, Werner I, Arnold ML, Lichy C, et al. MTHFR 677TT genotype increases the risk for cervical artery dissections. J Neurol Neurosurg Psychiatry. 2006;77(3):951-2. https://doi.org/10.1136/jnnp.2006.089730 PMid:16844951 DOI: https://doi.org/10.1136/jnnp.2006.089730

Kurzwelly D, Knop S, Guenther M, Loeffler J, Korfel A, Thiel E, et al. Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population. J Neurooncol. 2010;100(2):187-92. https://doi.org/10.1007/ s11060-010-0154-4 PMid:20237949 DOI: https://doi.org/10.1007/s11060-010-0154-4

Gast A, Bermejo JL, Flohr T, Stanulla M, Burwinkel B, Schrappe M, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: A case-control study. Leukemia. 2007;21(2):320-5. https://doi.org/10.1038/sj.leu.2404474 PMid:17136115 DOI: https://doi.org/10.1038/sj.leu.2404474

Niclot S, Pruvot Q, Besson C, Savoy D, Macintyre E, Salles G, et al. Implication of the folate-methionine metabolism pathways in susceptibility to follicular lymphomas. Blood. 2006;108(1):278- 85. https://doi.org/10.1182/blood-2005-04-1567 PMid:16410450 DOI: https://doi.org/10.1182/blood-2005-04-1567

Küry S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, Neel TL, et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: A French case-controlled genetic association study. BMC Cancer. 2008;8:326. https://doi.org/10.1186/1471-2407-8-326 PMid:18992148 DOI: https://doi.org/10.1186/1471-2407-8-326

Födinger M, Buchmayer H, Heinz G, Papagiannopoulos M, Kletzmayr J, Rasoul-Rockenschaub S, et al. Effect of MTHFR 1298A→C and MTHFR 677C→T genotypes on total homocysteine, folate, and Vitamin B12 plasma concentrations in kidney graft recipients. J Am Soc Nephrol. 2000;11(10):1918-25. PMid:11004224 DOI: https://doi.org/10.1681/ASN.V11101918

Feix A, Winkelmayer WC, Eberle C, Sunder-Plassmann G, Födinger M. Methionine synthase reductase MTRR 66A>G has no effect on total homocysteine, folate, and Vitamin B12 concentrations in renal transplant patients. Atherosclerosis. 2004;174(1):43-8. https://doi.org/10.1016/j.atherosclerosis.2003.12.036 PMid:15135249 DOI: https://doi.org/10.1016/j.atherosclerosis.2003.12.036

Lovricevic I, Franjic BD, Tomicic M, Vrkic N, De Syo D, Hudorovic N, et al. 5, 10-Methylenetetrahydrofolate reductase (MTHFR) 677 C→T genetic polymorphism in 228 croatian volunteers. Coll Antropol. 2004;28(2):647-54. PMid:15666596

Jokić M, Brčić-Kostić K, Stefulj J, Ivković TC, Božo L, Gamulin M, et al. Association of MTHFR, MTR, MTRR, RFC1, and DHFR gene polymorphisms with susceptibility to sporadic colon cancer. DNA Cell Biol. 2011;30(10):771-6. https://doi.org/10.1089/dna.2010.1189 PMid:21438757 DOI: https://doi.org/10.1089/dna.2010.1189

Motti C, Gnasso A, Bernardini S, Massoud R, Pastore A, Rampa P, et al. Common mutation in methylenetetrahydrofolate reductase. Correlation with homocysteine and other risk factors for vascular disease. Atherosclerosis. 1998;139(2):377-83. https://doi.org/10.1016/s0021-9150(98)00079-3 PMid:9712345 DOI: https://doi.org/10.1016/S0021-9150(98)00079-3

Saccucci P, Compagnone E, Verrotti A, Galasso C, Curatolo P. Lack of association between MTHFR C677T and MTHFR A1298C genetic polymorphisms and mental retardation. Nutr Neurosci. 2008;11(5):241-2. https://doi.org/10.1179/147683008X301595 PMid:18782485 DOI: https://doi.org/10.1179/147683008X301595

Giusti B, Saracini C, Bolli P, Magi A, Martinelli I, Peyvandi F, et al. Early-onset ischaemic stroke: Analysis of 58 polymorphisms in 17 genes involved in methionine metabolism. Thromb Haemost. 2010;104(2):231-42. https://doi.org/10.1160/TH09-11-0748296 PMid:20458436 DOI: https://doi.org/10.1160/TH09-11-0748

Dhonukshe-Rutten RA, de Vries JH, de Bree A, van der Put N, van Staveren WA, de Groot LC. Dietary intake and status of folate and Vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur J Clin Nutr. 2009;63(1):18-30. https://doi.org/10.1038/sj.ejcn.1602897 PMid:17851461 DOI: https://doi.org/10.1038/sj.ejcn.1602897

Fedota OM, Roshchenyuk LV, Sadovnychenko IA, Merenkova IN, Gontar IV, Vorontsov VM. Analysis of one-carbon metabolism genes and epidermal differentiation complex in patients with ichthyosis vulgaris. Georgian Med News. 2017;264:90-7. PMid:28480858

Binia A, Contreras AV, Canizales-Quinteros S, Alonso VA, Tejero ME, Silva-Zolezzi I. Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folate/ homocysteine pathway metabolism. Genes Nutr. 2014;9(5):421. https://doi.org/10.1007/s12263-014-0421-7 PMid:25106483 DOI: https://doi.org/10.1007/s12263-014-0421-7

Jones P, Beckett E, Yates Z, Veysey M, Lucock M. Converging evolutionary, environmental and clinical ideas on folate metabolism. Explor Res Hypothesis Med. 2016;1(3):34-41. https://doi.org/10.14218/ERHM.2016.00003b DOI: https://doi.org/10.14218/ERHM.2016.00003b

Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) T677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58(1):1-10. https://doi.org/10.1016/j.ejmg.2014.10.004 PMid:25449138 DOI: https://doi.org/10.1016/j.ejmg.2014.10.004

Sun MY, Zhang L, Shi SL, Lin JN. Associations between methylenetetrahydrofolate reductase (MTHFR) polymorphisms and non-alcoholic fatty liver disease (NAFLD) risk: A meta-analysis. PLoS One. 2016;11(4):e0154337. https://doi.org/10.1371/journal.pone.0154337 PMid:27128842 DOI: https://doi.org/10.1371/journal.pone.0154337

Wang W, Jiao XH, Wang XP, Sun XY, Dong C. MTR, MTRR, and MTHFR gene polymorphisms and susceptibility to nonsyndromic cleft lip with or without cleft palate. Genet Test Mol Biomarkers. 2016;20(6):297-303. https://doi.org/10.1089/gtmb.2015.0186 PMid:27167580 DOI: https://doi.org/10.1089/gtmb.2015.0186

Zhi X, Yang B, Fan S, Li Y, He M, Wang D, et al. Additive interaction of MTHFR C677T and MTRR A66G polymorphisms with being overweight/obesity on the risk of Type 2 diabetes. Int J Environ Res Public Health. 2016;13(12):1243. https://doi.org/10.3390/ijerph13121243 PMid:27983710 DOI: https://doi.org/10.3390/ijerph13121243

Khaligi K, Cheng G, Mirabbasi S, Khaligi B, Wu B, Fan W. Opposite impact of methylene tetrahydrofolate reductase C677T and methylene tetrahydrofolate reductase A1298C gene polymorphisms on systemic inflammation. J Clin Lab Anal. 2018;32(5):e22401. https://doi.org/10.1002/jcla.22401 PMid:29396861 DOI: https://doi.org/10.1002/jcla.22401

Sorokina I, Myroshnychenko M, Sherstiuk S, Zubova Y, Nakonechna S, Panov S. The morphological picture of local immune responses in the kidneys, ureters and bladder of the foetuses and newborns, who developed in conditions of maternal preeclampsia. Georgian Med News. 2018;275:123-32. PMid:29578438

Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry. 2018;8:242. https://doi.org/10.1038/s41398-018-0276-6 PMid:30397195 DOI: https://doi.org/10.1038/s41398-018-0276-6

Ma LM, Yang HP, Yang XW, Ruan LH. Methionine synthase A2756G polymorphism influences pediatric acute lymphoblastic leukemia risk: A meta-analysis. Biosci Rep. 2019;39(1):BSR20181770. https://doi.org/10.1042/BSR20181770 PMid:30559146 DOI: https://doi.org/10.1042/BSR20181770

Ren ZJ, Zhang YP, Ren PW, Yang B, Deng S, Peng ZF, et al. Contribution of MTR A2756G polymorphism and MTRR A66G polymorphism to the risk of idiopathic male infertility. Medicine. 2019;98(51):e18273.c10.1186/s12958-020-00649-1 PMid:31860974 DOI: https://doi.org/10.1097/MD.0000000000018273

Tykhonova TM. Skin lesions in diabetes mellitus: Risk factors for development, clinical manifestations, prevention and treatment. Problemi Endokrinnoi Patologii. 2019;1:121-8. https://doi.org/10.21856/j-PEP.2019.1.15 DOI: https://doi.org/10.21856/j-PEP.2019.1.15

Lupi-Herrera E, Soto-López ME, Lugo-Dimas AJ, Núñez- Martínez ME, Gamboa R, Huesca-Gómez C, et al. Polymorphisms C677T and A1298C of MTHFR gene: Homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clin Appl Thromb Hemost. 2019;25:1076029618780344. https://doi.org/10.1177/1076029618780344 PMid:29916259 DOI: https://doi.org/10.1177/1076029618780344

Zara-Lopes T, Galbiatti-Dias AL, Castanhole-Nunes MM, Padovani-Júnior JA, Maniglia JV, Pavarino EC, et al. Polymorphisms in MTHFR, MTR, RFC1 and CßS genes involved in folate metabolism and thyroid cancer: A case-control study. Arch Med Sci. 2019;15(2):522-30. https://doi.org/10.5114/aoms.2018.73091 PMid:30899306 DOI: https://doi.org/10.5114/aoms.2018.73091

Zhang Y, Zhan W, Du Q, Wu L, Ding H, Liu F, et al. Variants c.677 C>T, c.1298 A>C in MTHFR, and c.66 A>G in MTRR affect the occurrence of recurrent pregnancy loss in chinese women. Genet Test Mol Biomarkers. 2020;24(11):717-22. https://doi.org/10.1089/gtmb.2020.0106 PMid:33121283 DOI: https://doi.org/10.1089/gtmb.2020.0106

Mahmud N, Molloy A, McPartlin J, Corbally RC, Whitehead AS, Scott JM, et al. Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut. 1999;45:389-94. https://doi.org/10.1136/gut.45.3.389 PMid:10446107 DOI: https://doi.org/10.1136/gut.45.3.389

Husemoen LL, Toft U, Fenger M, Jørgensen T, Johansen N, Linneberg A. The association between atopy and factors influencing folate metabolism: Is low folate status causally related to the development of atopy? Int J Epidem. 2006;35(4):954-61. https://doi.org/10.1093/ije/dyl094 PMid:16766537 DOI: https://doi.org/10.1093/ije/dyl094

Vasku V, Bienertova-Vasku J, Necas M, Vasku A. MTHFR (methylenetetrahydrofolate reductase) C677T polymorphism and psoriasis. Clin Exp Med. 2009;9(4):327-31. https://doi.org/10.1007/s10238-009-0054-0 PMid:19484352 DOI: https://doi.org/10.1007/s10238-009-0054-0

van der Valk RJ, Kiefte-de Jong JC, Sonnenschein-van der Voort AM, Duijts L, Hafkamp-de Groen E, Moll HA, et al. Neonatal folate, homocysteine, Vitamin B12 levels and methylenetetrahydrofolate reductase variants in childhood asthma and eczema. Allergy. 2013;68(6):788-95. https://doi.org/10.1111/all.12146 PMid:23692062 DOI: https://doi.org/10.1111/all.12146

Fedota AM. Genodermatoses in the Study of the Problems of Human Genetic Safety. Dissertation. Kiev; 2012.

Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. Nature. 2001;411(6834):199-204. https://doi.org/10.1038/35075590 PMid:11346797 DOI: https://doi.org/10.1038/35075590

Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157:451- 6. https://doi.org/10.1016/s0021-9150(00)00739-5 PMid:11472746 DOI: https://doi.org/10.1016/S0021-9150(00)00739-5

Downloads

Published

2021-05-14

How to Cite

1.
Fedota O, Sadovnychenko I, Chorna L, Roshcheniuk L, Vorontsov V, Ryzhko P, Haybonyuk I, Belyaev S, Belozorov I, Makukh H. The Effects of Polymorphisms in One-carbon Metabolism Genes on Manifestation of Ichthyosis Vulgaris. Open Access Maced J Med Sci [Internet]. 2021 May 14 [cited 2024 Mar. 28];9(A):291-7. Available from: https://oamjms.eu/index.php/mjms/article/view/6004