Transcriptional Activity of Neurotrophins Genes and Their Receptors in the Peripheral Blood in Patients with Thyroid Diseases in Bukovinian Population of Ukraine

Authors

  • Iryna Kamyshna Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine https://orcid.org/0000-0002-4483-1856
  • Aleksandr Kamyshnyi Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine https://orcid.org/0000-0003-3141-4436

DOI:

https://doi.org/10.3889/oamjms.2021.6037

Keywords:

Neurotrophins, mRNA, Autoimmune thyroiditis, Hypothyroidism

Abstract

Objective. Thyroid hormone has an especially strong impact on central nervous system development, and thyroid hormone deficiency has been shown to result in severe mental retardation. It is crucial to identify compensatory mechanisms that can be involved in improving cognitive function and the quality of life of patients with hypothyroidism.

Methods: We used the pathway-specific PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and validate neurotrophins genes and their receptor expression in patients with thyroid pathology and control group.

Results: The analysis of gene expression of neurotrophins and their receptors showed that CRHBP, FRS2, FRS3, GFRA1, GFRA2, GMFB, NGF, NRG2, NRG4, NTF4, TRO, and VGF significantly decreased their expression in Group 3, which includes the patients with postoperative hypothyroidism. The patients with primary hypothyroidism stemming from AIT had significantly reduced expression of CRHBP, GFRA1, GFRA2, GMFB, NGF, PTGER2, and VGF, while the expression of NRG4 and TRO increased. In Group 3, which includes the patients with AIT and elevated serum anti-Tg and anti-TPO autoantibodies, the mRNA levels of GFRA2, NGF, NRG2, NTF4, NGF, PTGER were reduced, and the expression of CRHBP, FRS2, FRS3 GFRA1, GMFB, NRG4, TRO, and VGF significantly increased.

Conclusion: These results indicate significant variability in the transcriptional activity of the genes of encoding neurotrophins and their receptors in the peripheral blood in people with thyroid diseases.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

Author Biographies

Iryna Kamyshna, Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine

Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine

Aleksandr Kamyshnyi, Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine

Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University

References

Vanderpump MP, Tunbridge WM. Epidemiology and prevention of clinical and subclinical hypothyroidism. Thyroid. 2002;12(10):839- 47. https://doi.org/10.1089/105072502761016458 PMid:12487765 DOI: https://doi.org/10.1089/105072502761016458

Montero-Pedrazuela A, Venero C, Lavado-Autric R, Fernández- Lamo I, García-Verdugo JM, Bernal J, et al. Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol Psychiatry. 2006;11(4):361-71. https://doi.org/10.1038/sj.mp.4001802 PMid:16446739 DOI: https://doi.org/10.1038/sj.mp.4001802

Zhang L, Blomgren K, Kuhn HG, Cooper-Kuhn CM. Effects of postnatal thyroid hormone deficiency on neurogenesis in the juvenile and adult rat. Neurobiol Dis. 2009;34(2):366-74. https://doi.org/10.1016/j.nbd.2009.02.006 PMid:19233274 DOI: https://doi.org/10.1016/j.nbd.2009.02.006

Rovet JF, Ehrlich R. Psychoeducational outcome in children with early-treated congenital hypothyroidism. Pediatrics. 2000;105(3 Pt 1):515-22. https://doi.org/10.1542/peds.105.3.515 PMid:10699102 DOI: https://doi.org/10.1542/peds.105.3.515

Bilous I, Pavlovych L, Krynytska I, Marushchak M, Kamyshnyi A. Apoptosis and cell cycle pathway-focused genes expression analysis in patients with different forms of thyroid pathology. Open Access Maced J Med Sci. 2020;8(B):784-92. https://doi.org/10.3889/oamjms.2020.4760 DOI: https://doi.org/10.3889/oamjms.2020.4760

Bilous II, Korda MM, Krynytska IY, Kamyshnyi AM. Nerve impulse transmission pathway-focused genes expression analysis in patients with primary hypothyroidism and autoimmune thyroiditis. Endocr Regul. 2020;54(2):109-18. https://doi.org/10.2478/enr-2020-0013 PMid:32597152 DOI: https://doi.org/10.2478/enr-2020-0013

Bilous I, Pavlovych L, Kamyshnyi A. Primary hypothyroidism and autoimmune thyroiditis alter the transcriptional activity of genes regulating neurogenesis in the blood of patients. Endocr Regul. 2021;55(1):5-15. https://doi.org/10.2478/enr-2021-0002 PMid:33600668 DOI: https://doi.org/10.2478/enr-2021-0002

Degen A, Krynytska I, Kamyshnyi A. Changes in the expression of regulatory MicroRNAs miR-21 and miR-155-in gut-associated lymphoid tissue cells of rats with streptozotocin-induced diabetes and after the administration of a non-selective TNF-A blocker. Rom J Diabetes Nutr Metab Dis. 2020;27(2):128-34.

Degen AS, Krynytska IY, Kamyshnyi AM. Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α _non-selective blockers. Endocr Regul. 2020;54(3):160- 71. https://doi.org/10.2478/enr-2020-0019 PMid:32857721 DOI: https://doi.org/10.2478/enr-2020-0019

Putilin DA, Evchenko SY, Fedoniuk LY, Tokarskyy OS, Kamyshny OM, Migenko LM, et al. The influence of metformin to the transcriptional activity of the mTOR and FOX3 genes in parapancreatic adipose tissue of streptozotocin-induced diabetic rats. J Med Life. 2020;13(1):50-5. https://doi.org/10.1530/endoabs.49.ep455 PMid:32341701 DOI: https://doi.org/10.1530/endoabs.49.EP455

ProzorovaТ, Tokarskyy O, Fedoniuk L, Harbuzova V, Morozova O, Kamyshny A, et al. Changes in the transcriptional activity of the lymphocyte homing regulatory genes Madcam1, Cxcr3, Ccr7 and S1pr1 affect structure of the population of T-Bet+, Rorγt+ and Foxp3+ cells in mesenteric lymph nodes. Rom J Diabetes Nutr Metab Dis 2020;27(3):185-90. https://doi.org/10.25040/ecpb2017.01.023 DOI: https://doi.org/10.25040/ecpb2017.01.023

Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American association of clinical endocrinologists and the American thyroid association. Endocr Pract. 2012;18(6):988-1028. https://doi.org/10.4158/ep12280.gl PMid:23246686 DOI: https://doi.org/10.4158/EP12280.GL

Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul. 2015;58:16-27. https://doi.org/10.1016/j.jbior.2014.11.003 PMid:25491371 DOI: https://doi.org/10.1016/j.jbior.2014.11.003

Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237(4819):1154-62. https://doi.org/10.1126/science.3306916 PMid:3306916 DOI: https://doi.org/10.1126/science.3306916

Hempstead BL. Deciphering proneurotrophin actions. Handb Exp Pharmacol. 2014;220:17-32. PMid:24668468 DOI: https://doi.org/10.1007/978-3-642-45106-5_2

Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci. 2005;29(3):414-26. https://doi.org/10.1016/j.mcn.2005.03.010 PMid:15950154 DOI: https://doi.org/10.1016/j.mcn.2005.03.010

Dugbartey AT. Neurocognitive aspects of hypothyroidism. Arch Intern Med. 1998;158(13):1413-8. https://doi.org/10.1001/archinte.158.13.1413 PMid:9665349 DOI: https://doi.org/10.1001/archinte.158.13.1413

Baldini IM, Vita A, Mauri MC, Amodei V, Carrisi M, Bravin S, et al. Psychopathological and cognitive features in subclinical hypothyroidism. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21(6):925-35. https://doi.org/10.1016/s0278-5846(97)00089-4 PMid:9380789 DOI: https://doi.org/10.1016/S0278-5846(97)00089-4

Haggerty JJ Jr., Stern RA, Mason GA, Beckwith J, Morey CE, Prange AJ Jr. Subclinical hypothyroidism: A modifiable risk factor for depression? Am J Psychiatry. 1993;150(3):508-10. PMid:8434671 DOI: https://doi.org/10.1176/ajp.150.3.508

Nockher WA, Renz H. Neurotrophins in clinical diagnostics: Pathophysiology and laboratory investigation. Clin Chim Acta. 2005;352(1-2):49-74. https://doi.org/10.1016/j.cccn.2004.10.002 PMid:15653100 DOI: https://doi.org/10.1016/j.cccn.2004.10.002

Skibinska M, Kapelski P, Rajewska-Rager A, Szczepankiewicz A, Narozna B, Duda J, et al. Correlation of metabolic parameters, neurotrophin-3, and neurotrophin-4 serum levels in women with schizophrenia and first-onset depression. Nord J Psychiatry. 2019;73(2):96-103. https://doi.org/10.1080/08039488.2018.156 3213 PMid:30654674 DOI: https://doi.org/10.1080/08039488.2018.1563213

Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996;36(2):280-6. https://doi.org/10.1016/0169-328x(95)00250-v PMid:8965648 DOI: https://doi.org/10.1016/0169-328X(95)00250-V

Lommatzsch M, Quarcoo D, Schulte-Herbrüggen O, Weber H, Virchow JC, Renz H, et al. Neurotrophins in murine viscera: A dynamic pattern from birth to adulthood. Int J Dev Neurosci. 2005;23(6):495-500. https://doi.org/10.1016/j.ijdevneu.2005.05.009 PMid:15978771 DOI: https://doi.org/10.1016/j.ijdevneu.2005.05.009

Katoh-Semba R, Kaisho Y, Shintani A, Nagahama M, Kato K. Tissue distribution and immunocytochemical localization of neurotrophin-3 in the brain and peripheral tissues of rats. J Neurochem. 1996;66(1):330-7. https://doi.org/10.1046/j.1471-4159.1996.66010330.x PMid:8522971 DOI: https://doi.org/10.1046/j.1471-4159.1996.66010330.x

Elfving B, Plougmann PH, Müller HK, Mathé AA, Rosenberg R, Wegener G. Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression. Int J Neuropsychopharmacol. 2010;13(5):563-72. https://doi.org/10.1017/s1461145709990721 PMid:19796445 DOI: https://doi.org/10.1017/S1461145709990721

Ketchesin KD, Stinnett GS, Seasholtz AF. Corticotropin-releasing hormone-binding protein and stress: From invertebrates to humans. Stress. 2017;20(5):449-64. https://doi.org/10.1080/10253890.2017.1322575 PMid:28436309 DOI: https://doi.org/10.1080/10253890.2017.1322575

Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: Implications for physiology and pathophysiology. Endocr Rev. 2006;27(3):260-86. https://doi.org/10.1210/er.2005-0034 PMid:16484629 DOI: https://doi.org/10.1210/er.2005-0034

Enoch MA, Shen PH, Ducci F, Yuan Q, Liu J, White KV, et al. Common genetic origins for EEG, alcoholism and anxiety: The role of CRH-BP. PLoS One. 2008;3(10):e3620. https://doi.org/10.1371/journal.pone.0003620 PMid:18974851 DOI: https://doi.org/10.1371/journal.pone.0003620

Chan RK, Vale WW, Sawchenko PE. Paradoxical activational effects of a corticotropin-releasing factor-binding protein “ligand inhibitor” in rat brain. Neuroscience. 2000;101(1):115-29. https://doi.org/10.1016/s0306-4522(00)00322-5 PMid:11068141 DOI: https://doi.org/10.1016/S0306-4522(00)00322-5

Behan DP, Khongsaly O, Owens MJ, Chung HD, Nemeroff CB, De Souza EB. Corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), and CRF/CRF-BP complex in Alzheimer’s disease and control postmortem human brain. J Neurochem. 1997;68(5):2053-60. https://doi.org/10.1046/j.1471-4159.1997.68052053.x PMid:9109532 DOI: https://doi.org/10.1046/j.1471-4159.1997.68052053.x

Meakin SO, MacDonald JI, Gryz EA, Kubu CJ, Verdi JM. The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J Biol Chem. 1999;274(14):9861- 70. https://doi.org/10.1074/jbc.274.14.9861 PMid:10092678 DOI: https://doi.org/10.1074/jbc.274.14.9861

Ranzi V, Meakin SO, Miranda C, Mondellini P, Pierotti MA, Greco A. The signaling adapters fibroblast growth factor receptor substrate 2 and 3 are activated by the thyroid TRK oncoproteins. Endocrinology. 2003;144(3):922-8. https://doi.org/10.1210/en.2002-221002 PMid:12586769 DOI: https://doi.org/10.1210/en.2002-221002

Nandi S, Alviña K, Lituma PJ, Castillo PE, Hébert JM. Neurotrophin and FGF signaling adapter proteins, FRS2 and FRS3, regulate dentate granule cell maturation and excitatory synaptogenesis. Neuroscience. 2018;369:192-201. https://doi.org/10.1016/j.neuroscience.2017.11.017 PMid:29155277 DOI: https://doi.org/10.1016/j.neuroscience.2017.11.017

Dabrowski A, Terauchi A, Strong C, Umemori H. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development. 2015;142(10):1818-30. https://doi.org/10.1242/dev.115568 PMid:25926357 DOI: https://doi.org/10.1242/dev.115568

Danzer SC, Kotloski RJ, Walter C, Hughes M, McNamara JO. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB. Hippocampus. 2008;18(7):668-78. https://doi.org/10.1002/hipo.20426 PMid:18398849 DOI: https://doi.org/10.1002/hipo.20426

Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron. 2008;59(3):399- 412. https://doi.org/10.1016/j.neuron.2008.10.021 PMid:18701066 DOI: https://doi.org/10.1016/j.neuron.2008.06.023

Rémy S, Naveilhan P, Brachet P, Neveu I. Differential regulation of GDNF, neurturin, and their receptors in primary cultures of rat glial cells. J Neurosci Res. 2001;64(3):242-51. https://doi.org/10.1002/jnr.1072 PMid:11319768 DOI: https://doi.org/10.1002/jnr.1072

Widenfalk J, Nosrat C, Tomac A, Westphal H, Hoffer B, Olson L. Neurturin and glial cell line-derived neurotrophic factor receptor-beta (GDNFR-beta), novel proteins related to GDNF and GDNFR-alpha with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs. J Neurosci. 1997;17(21):8506-19. https://doi.org/10.1523/jneurosci.17-21-08506.1997 PMid:9334423 DOI: https://doi.org/10.1523/JNEUROSCI.17-21-08506.1997

Carlson DJ, Strait KA, Schwartz HL, Oppenheimer JH. Thyroid hormone receptor isoform content in cultured Type 1 and Type 2 astrocytes. Endocrinology. 1996;137(3):911-7. https://doi.org/10.1210/endo.137.3.8603603 PMid:8603603 DOI: https://doi.org/10.1210/endo.137.3.8603603

Paul S, Das S, Poddar R, Sarkar PK. Role of thyroid hormone in the morphological differentiation and maturation of astrocytes: Temporal correlation with synthesis and organization of actin. Eur J Neurosci. 1996;8(11):2361-70. https://doi.org/10.1111/j.1460-9568.1996.tb01199.x PMid:8950100 DOI: https://doi.org/10.1111/j.1460-9568.1996.tb01199.x

Rodríguez-Peña A. Oligodendrocyte development and thyroid hormone. J Neurobiol. 1999;40(4):497-512. PMid:10453052 DOI: https://doi.org/10.1002/(SICI)1097-4695(19990915)40:4<497::AID-NEU7>3.0.CO;2-#

Selvakumar GP, Iyer SS, Kempuraj D, Raju M, Thangavel R, Saeed D, et al. Glia maturation factor dependent inhibition of mitochondrial PGC-1α _triggers oxidative stress-mediated apoptosis in N27 rat dopaminergic neuronal cells. Mol Neurobiol. 2018;55(9):7132-52. https://doi.org/10.1007/s12035-018-0882-6 PMid:29383690 DOI: https://doi.org/10.1007/s12035-018-0882-6

Inagaki M, Aoyama M, Sobue K, Yamamoto N, Morishima T, Moriyama A, et al. Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes. Biochim Biophys Acta. 2004;1670(3):208-16. https://doi.org/10.1016/j.bbagen.2003.12.006 PMid:14980447 DOI: https://doi.org/10.1016/j.bbagen.2003.12.006

Yuan Z, Yu Z, Zhang Y, Yang H. Analysis of the clinical diagnostic value of GMFB in cerebral infarction. Curr Pharm Biotechnol. 2020;21(10):955-63. https://doi.org/10.2174/1389201021666200210102425 PMid:32039676 DOI: https://doi.org/10.2174/1389201021666200210102425

Fan J, Fong T, Chen X, Chen C, Luo P, Xie H. Glia maturation factor-β: A potential therapeutic target in neurodegeneration and neuroinflammation. Neuropsychiatr Dis Treat. 2018;14:495-504. https://doi.org/10.2147/ndt.s157099 PMid:29445286 DOI: https://doi.org/10.2147/NDT.S157099

Rahman A, Khan KM, Al-Khaledi G, Khan I, Al-Shemary T. Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats. Neurotoxicology. 2012;33(3):370-83. https://doi.org/10.1016/j.neuro.2012.02.014 PMid:22387731 DOI: https://doi.org/10.1016/j.neuro.2012.02.014

Barouch R, Appel E, Kazimirsky G, Braun A, Renz H, Brodie C. Differential regulation of neurotrophin expression by mitogens and neurotransmitters in mouse lymphocytes. J Neuroimmunol. 2000;103(2):112-21. https://doi.org/10.1016/s0165-5728(99)00233-7 PMid:10696906 DOI: https://doi.org/10.1016/S0165-5728(99)00233-7

Walz JC, Magalhães PV, Giglio LM, Cunha AB, Stertz L, Fries GR, et al. Increased serum neurotrophin-4/5 levels in bipolar disorder. J Psychiatr Res. 2009;43(7):721-3. https://doi.org/10.1016/s0924-9338(09)70792-8 PMid:19081579 DOI: https://doi.org/10.1016/S0924-9338(09)70792-8

Dicou E, Hurez D, Nerrière V. Natural autoantibodies against the nerve growth factor in autoimmune diseases. J Neuroimmunol. 1993;47(2):159-67. https://doi.org/10.1016/0165-5728(93)90026-u PMid:8370767 DOI: https://doi.org/10.1016/0165-5728(93)90026-U

Hahn C, Islamian AP, Renz H, Nockher WA. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol. 2006;117(4):787-94. https://doi.org/10.1016/j.jaci.2005.12.1339 PMid:16630935 DOI: https://doi.org/10.1016/j.jaci.2005.12.1339

Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci. 2017;18(5):1028. https://doi.org/10.3390/ijms18051028 PMid:28492466 DOI: https://doi.org/10.3390/ijms18051028

Yao M, Dooley PC, Schuijers JA, Grills BL. The effects of hypothyroidism on nerve growth factor and norepinephrine concentrations in weight-bearing and non-weight-bearing bones of rats. J Musculoskelet Neuronal Interact. 2004;4(3):319-24. PMid:15615500

Falls DL. Neuregulins: Functions, forms, and signaling strategies. Exp Cell Res. 2003;284(1):14-30. https://doi.org/10.1016/s0014-4827(02)00102-7 PMid:12648463 DOI: https://doi.org/10.1016/S0014-4827(02)00102-7

Bermingham-McDonogh O, Xu YT, Marchionni MA, Scherer SS. Neuregulin expression in PNS neurons: Isoforms and regulation by target interactions. Mol Cell Neurosci. 1997;10(3-4):184-95. https://doi.org/10.1006/mcne.1997.0654 PMid:9532580 DOI: https://doi.org/10.1006/mcne.1997.0654

Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron. 2000;26(2):443-55. https://doi.org/10.1016/s0896-6273(00)81176-9 PMid:10839362 DOI: https://doi.org/10.1016/S0896-6273(00)81176-9

Yang H, Zhang J, Breyer RM, Chen C. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J Neurochem. 2009;108(1):295-304. https://doi.org/10.1111/j.1471-4159.2008.05766.x PMid:19012750 DOI: https://doi.org/10.1111/j.1471-4159.2008.05766.x

Ma L, Yin M, Wu X, Wu C, Yang S, Sheng J, et al. Expression of trophinin and bystin identifies distinct cell types in the germinal zones of adult rat brain. Eur J Neurosci. 2006;23(9):2265-76. https://doi.org/10.1111/j.1460-9568.2006.04782.x PMid:16706835 DOI: https://doi.org/10.1111/j.1460-9568.2006.04782.x

Levi A, Eldridge JD, Paterson BM. Molecular cloning of a gene sequence regulated by nerve growth factor. Science. 1985;229(4711):393-5. https://doi.org/10.1126/science.3839317 PMid:3839317 DOI: https://doi.org/10.1126/science.3839317

Bonni A, Ginty DD, Dudek H, Greenberg ME. Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci. 1995;6(2):168-83. https://doi.org/10.1006/mcne.1995.1015 PMid:7551568 DOI: https://doi.org/10.1006/mcne.1995.1015

van den Pol AN, Bina K, Decavel C, Ghosh P. VGF expression in the brain. J Comp Neurol. 1994;347(3):455-69. https://doi.org/10.1002/cne.903470311 PMid:7822494 DOI: https://doi.org/10.1002/cne.903470311

Snyder SE, Salton SR. Expression of VGF mRNA in the adult rat central nervous system. J Comp Neurol. 1998;394(1):91-105. https://doi.org/10.1002/(sici)1096-9861(19980427)394:1<91::aid-cne7>3.0.co;2-c PMid:9550144 DOI: https://doi.org/10.1002/(SICI)1096-9861(19980427)394:1<91::AID-CNE7>3.0.CO;2-C

Cattaneo A, Sesta A, Calabrese F, Nielsen G, Riva MA, Gennarelli M. The expression of VGF is reduced in leukocytes of depressed patients and it is restored by effective antidepressant treatment. Neuropsychopharmacology. 2010;35(7):1423-8. https://doi.org/10.1038/npp.2010.11 PMid:20164831 DOI: https://doi.org/10.1038/npp.2010.11

Chen S, Jiang H, Hou Z, Yue Y, Zhang Y, Zhao F, et al. Higher serum VGF protein levels discriminate bipolar depression from major depressive disorder. J Neurosci Res. 2019;97(5):597- 606. https://doi.org/10.1002/jnr.24377 PMid:30575991 DOI: https://doi.org/10.1002/jnr.24377

Downloads

Published

2021-05-02

How to Cite

1.
Kamyshna I, Kamyshnyi A. Transcriptional Activity of Neurotrophins Genes and Their Receptors in the Peripheral Blood in Patients with Thyroid Diseases in Bukovinian Population of Ukraine. Open Access Maced J Med Sci [Internet]. 2021 May 2 [cited 2024 Nov. 21];9(A):208-16. Available from: https://oamjms.eu/index.php/mjms/article/view/6037