Thymol Mitigates Monosodium Glutamate-Induced Neurotoxic Cerebral and Hippocampal Injury in Rats through Overexpression of Nuclear Erythroid 2-Related Factor 2 Signaling Pathway as Well as Altering Nuclear Factor-Kappa B and Glial Fibrillary Acidic Protein Expression

Authors

  • Rasha Mostafa Department of Pharmacology, Medical Research Division, National Research Centre (ID: 60014618), Dokki, Cairo, Egypt https://orcid.org/0000-0002-5765-350X
  • Azza Hassan Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
  • Abeer Salama Department of Pharmacology, Medical Research Division, National Research Centre (ID: 60014618), Dokki, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.6170

Keywords:

Thymol, Monosodium glutamate, Neurotoxicity, Nuclear erythroid 2-related factor 2, Nuclear factor-kappa β, Glial fibrillary acidic protein

Abstract

BACKGROUND: Monosodium glutamate (MSG) is commonly used in various food industries as a flavor enhancer. MSG is reported to cause increased neurotoxicity.

AIM: The study investigates the molecular mechanisms underlying the neuroprotective effect of thymol against MSG-induced neurotoxic cerebral and hippocampal injury in rats.

MATERIALS AND METHODS: Forty rats were allocated to four Groups: I (Normal); II MSG-control (2 g/kg; i.p.); III-IV MSG + Thymol (400 and 800 mg/kg/day; p.o.). All groups were treated for 15 days.

RESULTS: MSG-control group showed a significant reduction in behavioral activity, elevated brain tissue oxidative stress, inflammatory parameters, Nuclear Erythroid 2-Related Factor 2 (Nrf2) gene upregulation, overexpression of nuclear factor-kappa β _(NF-kβ), glial fibrillary acidic protein (GFAP) along with neuronal damage in the cerebral cortex, and hippocampus. Thymol ameliorated MSG-induced brain injury through overexpression of Nrf2 gene, thus increasing the cellular defense and resulting in organized anti-oxidant and anti-inflammatory effects. Thymol improved behavioral activity and brain tissue glutathione content. Thymol also decreased brain contents of malondialdehyde, nitric oxide, tumor necrosis factor-alpha, and interleukin-6. Moreover, Thymol improved NF-kβ _and GFAP immunohistochemical expression besides histopathological picture in cerebral cortex and hippocampus as compared to MSG control rats.

CONCLUSION: These results suggest that thymol exhibits promising neuroprotective effects. The study elucidates the molecular mechanisms linking Nrf2 pathway signaling to oxidative stress, inflammation and NF-kβ _expression underlying thymol’s protection against MSG-induced neurotoxicity. The study also highlights the role of GFAP expression in MSG-induced astrocyte injury of cerebrum and hippocampus of rats and the promising protective effects of thymol in ameliorating astrocyte injury.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Onaolapo OJ, Onaolapo AY, Akanmu M, Gbola O. Evidence of alterations in brain structure and antioxidant status following “low-dose” monosodium glutamate ingestion. Pathophysiology. 2016;23(3):147-56. https://doi.org/10.1016/j.pathophys.2016.05.001 PMid:27312658

Walker R, Lupien JR. The safety evaluation of monosodium glutamate. J Nutr. 2000;130(4):1049S-52. https://doi.org/10.1093/jn/130.4.1049s PMid:2731265810736380

Rotimi OA, Olayiwola I, Ademuyiwa O, Balogun EA. Effects of fibre-enriched diets on tissue lipid profiles of MSG obese rats. Food Chem Toxicol. 2012;50(11):4062-7. https://doi.org/10.1016/j.fct.2012.08.001 PMid:2731265822898616

Quines CB, Rosa SG, Da Rocha JT, Gai BM, Bortolatto CF, Duarte MM, et al. Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats. Life Sci. 2014;107(1-2):27-31. https://doi.org/10.1016/j.lfs.2014.04.032 PMid:2731265824802127

Nagakannan P, Shivasharan B, Thippeswamy B, Veerapur V, Bansal P. Protective effect of hydroalcoholic extract of Mimusops elengi Linn. Flowers against middle cerebral artery occlusion induced brain injury in rats. J Ethnopharmacol. 2012;140(2):247-54. https://doi.org/10.1016/j.jep.2012.01.012 PMid:2731265822281124

Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, et al. A review of the alleged health hazards of monosodium glutamate. Comprehens Rev Food Sci Food Saf. 2019;18(4):1111-34. https://doi.org/10.1111/1541-4337.12448

Shivasharan B, Nagakannan P, Thippeswamy B, Veerapur V. Protective effect of Calendula officinalis L. flowers against monosodium glutamate induced oxidative stress and excitotoxic brain damage in rats. Indian J Clin Biochem. 2013;28(3):292-8. https://doi.org/10.1007/s12291-012-0256-1 PMid:2731265824426226

Zarzuelo A, Crespo E. The medicinal and non-medicinal uses of thyme. In: Thyme: The Genus Thymus. Vol. 17. United States: CRC Press; 2002. p. 263-92.

Fachini-Queiroz FC, Kummer R, Estevao-Silva CF, Carvalho MD, Cunha JM, Grespan R, et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat 2012;2012:657026. https://doi.org/10.1155/2012/657026 PMid:2731265822919415

Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras DM, Segura-Carretero A, et al. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res. 2018;32(9):1688-706. https://doi.org/10.1002/ptr.6109 PMid:2731265829785774

Deb DD, Parimala G, Devi SS, Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact. 2011;193(1):97-106. https://doi.org/10.1016/j.cbi.2011.05.009 PMid:2731265821640085

Liang D, Li F, Fu Y, Cao Y, Song X, Wang T, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation. 2014;37(1):214-22. https://doi.org/10.1007/s10753-013-9732-x PMid:2731265824057926

Hashemipour H, Kermanshahi H, Golian A, Veldkamp T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult Sci. 2013;92(8):2059-69. https://doi.org/10.3382/ps.2012-02685 PMid:2731265823873553

Javed H, Azimullah S, Meeran M, Ansari SA, Ojha S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. Int J Mol Sci. 2019;20(7):1538. https://doi.org/10.3390/ijms20071538 PMid:2731265830934738

Kulkarni S. Experiments on isolated preparation. In: Hand Book of Experimental Pharmacology. Berlin, Germany: Springer; 1987. p. 3.

van den Berg R, Laman JD, van Meurs M, Hintzen RQ, Hoogenraad CC. Rotarod motor performance and advanced spinal cord lesion image analysis refine assessment of neurodegeneration in experimental autoimmune encephalomyelitis. J Neurosci Methods. 2016;262:66-76. https://doi.org/10.1016/j.jneumeth.2016.01.013 PMid:2731265826784021

Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids. 1994;59(6):383-8. https://doi.org/10.1016/0039-128x(94)90006-x PMid:273126587940617

Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62-71. https://doi.org/10.1006/niox.2000.0319 PMid:2731265811178938

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-7. https://doi.org/10.1016/0003-9861(59)90090-6 PMid:2731265813650640

Bulaj G, Kortemme T, Goldenberg DP. Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry. 1998;37(25):8965-72. https://doi.org/10.1021/bi973101r PMid:273126589636038

Brouckaert P, Libert C, Everaerdt B, Takahashi N, Cauwels A, Fiers W. Tumor necrosis factor, its receptors and the connection with interleukin 1 and interleukin 6. Immunobiology. 1993;187(3-5):317-29. https://doi.org/10.1016/s0171-2985(11)80347-5 PMid:273126588392490

Mostafa RE, Salama AA, Abdel-Rahman RF, Ogaly HA. Hepatoand neuro-protective influences of biopropolis on thioacetamideinduced acute hepatic encephalopathy in rats. Can J Physiol Pharmacol. 2016;95(5):539-47. https://doi.org/10.1139/cjpp-2016-0433 PMid:2731265828177688

Bancroft J, Stevens A, Turner D. Theory and Practice of Histological Techniques. 4th ed. New York Edinburgh, Madrid, Sanfrancisco: Churchill Living Stone; 1996. p. 20.

Khalil MN, Choucry MA, El Senousy AS, Hassan A, El-Marasy SA, El Awdan SA, et al. Ambrosin, a potent NF-κβ inhibitor, ameliorates lipopolysaccharide induced memory impairment, comparison to curcumin. PLoS One. 2019;14(7):e0219378. https://doi.org/10.1371/journal.pone.0219378 PMid:2731265831276550

Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar deactivates the hepatic LPS/TLR4 signaling pathway and ameliorates adipocyte dysfunction in rats with high-fat emulsion/LPS model-induced non-alcoholic steatohepatitis. Inflammation. 2019;42(3):1056-1070. https://doi.org/10.1007/s10753-019-00967-6 PMid:2731265830737662

Swamy AV, Patel N, Gadad P, Koti B, Patel U, Thippeswamy A, et al. Neuroprotective activity of pongamia pinnata in monosodium glutamate-induced neurotoxicity in rats. Indian J Pharm Sci. 2013;75(6):657. PMid:2731265824591740

Sadek K, Abouzed T, Nasr S. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model. Can J Physiol Pharmacol. 2016;94(4):394-401. https://doi.org/10.1139/cjpp-2015-0388 PMid:2731265826900785

Khalil RM, Khedr NF. Curcumin protects against monosodium glutamate neurotoxicity and decreasing NMDA2B and mGluR5 expression in rat hippocampus. Neurosignals. 2016;24(1):81-7. https://doi.org/10.1159/000442614

Vomhof-DeKrey EE, Picklo MJ Sr. The Nrf2-antioxidant response element pathway: A target for regulating energy metabolism. J Nutr Biochem. 2012;23(10):1201-6. https://doi.org/10.1016/j.jnutbio.2012.03.005 PMid:2731265822819548

Zhu W, Ding Y, Kong W, Li T, Chen H. Docosahexaenoic acid (DHA) provides neuroprotection in traumatic brain injury models via activating Nrf2-ARE signaling. Inflammation. 2018;41(4):1182-93. https://doi.org/10.1007/s10753-018-0765-z PMid:2731265829663102

Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology. 2014;79:298-306. https://doi.org/10.1016/j.neuropharm.2013.11.004. PMid:2731265824262633

Nair S, Doh S, Chan J, Kong AN, Cai L. Regulatory potential for concerted modulation of Nrf2-and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99(12):2070-82. https://doi.org/10.1038/sj.bjc.6604703

Li X, Wang H, Gao Y, Li L, Tang C, Wen G, et al. Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway. PLoS One. 2016;11(10):e0164237. https://doi.org/10.1371/journal.pone.0164237 PMid:2731265827780244

Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:46763. https://doi.org/10.1038/srep46763 PMid:2731265828429775

Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, et al. Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and-independent pathways. Free Radic Biol Med. 2016;92:15-28. https://doi.org/10.1016/j.freeradbiomed.2015.12.027 PMid:2731265826724590

Wei CC, Kong YY, Li GQ, Guan YF, Wang P, Miao CY. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci Rep. 2017;7(1):1-13. https://doi.org/10.1038/s41598-017-00851-z PMid:2731265828386082

Du J, He W, Zhang C, Wu J, Li Z, Wang M, et al. Pentamethylquercetin attenuates cardiac remodeling via activation of the sestrins/Keap1/Nrf2 pathway in MSG-induced obese mice. BioMed Res Int. 2020;2020:3243906. https://doi.org/10.1155/2020/3243906

Xu W, Mo J, Ocak U, Travis ZD, Enkhjargal B, Zhang T, et al. Activation of melanocortin 1 receptor attenuates early brain injury in a rat model of subarachnoid hemorrhage viathe suppression of neuroinflammation through AMPK/TBK1/NF-κB pathway in rats. Neurotherapeutics. 2020;17(1):294-308. https://doi.org/10.1007/s13311-019-00772-x PMid:2731265831486022

Nurmasitoh T, Sari DC, Partadiredja G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol. 2018;41(3):324-9. https://doi.org/10.1080/01480545.2017.1414833 PMid:2731265829280389

Hashem HE, Safwat ME, Algaidi S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of Vitamin C (histological and immunohistochemical study). J Mol Histol. 2012;43(2):179-86. https://doi.org/10.1007/s10735-011-9380-0 PMid:2731265822143495

Zaher EA. The possible neuroprotective effect of astaxanthin on monosodium glutamate and aspartame induced hippocampal changes in albino rats: (Histological and immuno-histochemical study). Egypt J Histol. 2020;43(3):684-701. https://doi.org/10.21608/ejh.2020.22609.1235

Priestley CM, Williamson EM, Wafford KA, Sattelle DB. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol. 2003;140(8):1363-72. https://doi.org/10.1038/sj.bjp.0705542 PMid:2731265814623762

Sancheti J, Shaikh MF, Chaudhari R, Somani G, Patil S, Jain P, et al. Characterization of anticonvulsant and antiepileptogenic potential of thymol in various experimental models. Naunynschmiedebergs Arch Pharmacol. 2014;387(1):59-66. https://doi.org/10.1007/s00210-013-0917-5 PMid:2731265824065087

Li H, Qin T, Li M, Ma S. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metabolic Brain Dis. 2017;32(2):385-93. https://doi.org/10.1007/s11011-016-9921-z PMid:2731265827761760

Chamanara M, Abdollahi A, Rezayat SM, Ghazi-Khansari M, Dehpour A, Nassireslami E, et al. Thymol reduces acetic acidinduced inflammatory response through inhibition of NF-kB signaling pathway in rat colon tissue. Inflammopharmacology. 2019;27(6):1275-83. https://doi.org/10.1007/s10787-019-00583-8 PMid:2731265830903350

Downloads

Published

2021-09-08

How to Cite

1.
Mostafa R, Hassan A, Salama A. Thymol Mitigates Monosodium Glutamate-Induced Neurotoxic Cerebral and Hippocampal Injury in Rats through Overexpression of Nuclear Erythroid 2-Related Factor 2 Signaling Pathway as Well as Altering Nuclear Factor-Kappa B and Glial Fibrillary Acidic Protein Expression. Open Access Maced J Med Sci [Internet]. 2021 Sep. 8 [cited 2024 Nov. 21];9(A):716-2. Available from: https://oamjms.eu/index.php/mjms/article/view/6170