Brine Shrimp (Artemia salina Leach.) Lethality Test of Ethanolic Extract from Green Betel (Piper betle Linn.) and Red Betel (Piper crocatum Ruiz and Pav.) through the Soxhletation Method for Cytotoxicity Test
DOI:
https://doi.org/10.3889/oamjms.2021.6171Keywords:
Brine shrimp, Green betel, Red betel, Soxhletation, CytotoxicityAbstract
Traditional medicine is currently being explored and developed widely by various countries because its cost effectiveness and reduced side effects. The green betel (Piper betle Linn.) and the red betel (Piper crocatum Ruiz and Pav.) are plants from the same Piper genus that are widely cultivated in Indonesia and have various phytochemical properties and pharmacological effects. The objective of this research is to determine the cytotoxicity of green leaves and red betel leaves. This research was conducted in two main stages: first, the extraction and preparation through the soxhletation method; second, a cytotoxicity test through the brine shrimp (Artemia salina Leach) lethality test (BSLT). The results showed that there were lethal concentration 50 % (LC50) value in both green betel leaves ethanolic extract and red betel leaves ethanolic extract, with 44.975 μg per mL and 31.556 μg per mL, respectively. The red betel (leaves ethanolic extract has a higher cytotoxicity than green betel (leaves ethanolic extract which can be seen from the lower lethal concentration of 50% (LC50) value. The difference in cytotoxicity is due to differences in plant varieties that cause variations in phytochemical content which affects the pharmacological effects. The green betel leaves ethanolic extract and the red betel leaves ethanolic extract are cytotoxic and have potential anticancer properties.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. https://doi.org/10.3390/molecules21050559 PMid:27136524 DOI: https://doi.org/10.3390/molecules21050559
Subramaniyan V, Kayarohanam S, Janakiraman AK, Kumarasamy V. Impact of herbal drugs and its clinical application. Int J Res Pharm Sci. 2019;10(2):1340-5. https://doi.org/10.26452/ijrps.v10i2.537 DOI: https://doi.org/10.26452/ijrps.v10i2.537
Parveen A, Parveen B, Parveen R, Ahmad S. Challenges and guidelines for clinical trial of herbal drugs. J Pharm Bioallied Sci. 2015;7(4):329-33. https://doi.org/10.4103/0975-7406.168035 PMid:26681895 DOI: https://doi.org/10.4103/0975-7406.168035
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, et al. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules. 2020;10(1):47. https://doi.org/10.3390/biom10010047 PMid:31892257 DOI: https://doi.org/10.3390/biom10010047
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660 PMid:33538338 DOI: https://doi.org/10.3322/caac.21660
Salmerón-Manzano E, Garrido-Cardenas JA, Manzano- Agugliaro F. Worldwide research trends on medicinal plants. Int J Environ Res Public Health. 2020;17(10):3376. https://doi.org/10.3390/ijerph17103376 PMid:32408690 DOI: https://doi.org/10.3390/ijerph17103376
Aara A, Chappidi V, Ramadas MN. Antioxidant activity of eugenol in Piper betel leaf extract. J Family Med Prim Care. 2020;9(1):327-31. https://doi.org/10.4103/jfmpc.jfmpc_809_19 PMid:32110613 DOI: https://doi.org/10.4103/jfmpc.jfmpc_809_19
Arambewela LS, Arawwawala LD, Ratnasooriya WD. Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats. J Ethnopharmacol. 2020;102(2):239-45. https://doi.org/10.1016/j.jep.2005.06.016 PMid:16055288 DOI: https://doi.org/10.1016/j.jep.2005.06.016
Sivareddy B, Reginald BA, Sireesha D, Samatha M, Reddy KH, Subrahamanyam G. Antifungal activity of solvent extracts of Piper betle and Ocimum sanctum Linn on Candida albicans: An in vitro comparative study. J Oral Maxillofac Pathol. 2019;23(3):333-7 https://doi.org/10.4103/jomfp.jomfp_167_19 PMid:31942110 DOI: https://doi.org/10.4103/jomfp.JOMFP_167_19
Karsono K, Patilaya P, Azisah N, Nerdy N. Comparison of antimicrobial activity of red betel (Piper crocatum Ruiz and Pav) leaves nanoparticle and powder ethanolic extract against methicillin resistant Staphylococcus aureus. Int J PharmTech Res. 2015;8(4):696-701.
Rosyadi A, Faizah RN, Nuri N, Puspitasari E. Anticancer properties of methanolic extract of Piper crocatum leaf using BST and cytotoxicity on HeLa cell lines. Ann Trop Public Health. 2020;23(3A):3-11. https://doi.org/10.36295/asro.2020.2331 DOI: https://doi.org/10.36295/ASRO.2020.2331
Dianursanti D, Nugroho P, Prakasa MB. Comparison of maceration and soxhletation method for flavonoid production from Spirulina platensis as a sunscreen’s raw material. AIP Conf Proc. 2020;2230:020006. https://doi.org/10.1063/5.0002806 DOI: https://doi.org/10.1063/5.0002806
Supomo S, Syamsul ES, Apriliana A, Saleh C, Erwin E, Lestari D. Antioxidant assay of dayak onion (Eleutherine palmifolia) via DPPH (1,1-diphenil-2-picrylhydrazyl) and BSLT test for its active fraction. Rasayan J Chem. 2019;12(3):1340-6. https://doi.org/10.31788/rjc.2019.1235264 DOI: https://doi.org/10.31788/RJC.2019.1235264
Gupta D, Singh A. Piper betle and some Indian plant for antidepressant activity-a review. Res J Pharm Biol Chem Sci. 2016;7(2):1670-8.
Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91-3. PMid:30191186 DOI: https://doi.org/10.1016/j.tjem.2018.08.001
Pertiwi D, Hafiz I, Leny L. Potential bioactivities of ethanol, ethyl acetate and N-hexane extracts from pagoda leaves (Clerodendrum paniculatum L.). Rasayan J Chem. 2020;13(4):2313-6. https://doi.org/10.31788/rjc.2020.1345791 DOI: https://doi.org/10.31788/RJC.2020.1345791
Simorangkir M, Nainggolan B, Juwitaningsih T, Silaban S. The toxicity of N-hexane, ethyl acetate and ethanol extracts of sarang banua (Clerodendrum fragrans Vent Willd) leaves by brine shrimp lethality test (BSLT) method. J Phys Conf Ser. 2021;1811:012053. https://doi.org/10.1088/1742-6596/1811/1/012053 DOI: https://doi.org/10.1088/1742-6596/1811/1/012053
Saragih G, Tamrin T, Marpongahtun M, Nasution DY, Abdillah A. Phytochemical screening and toxicity of ethanolic extract of mangrove (Rhizophora mucronata) leaves from Langsa, Aceh Timur. Rasayan J Chem. 2020;13(1):476-80. https://doi.org/10.31788/rjc.2020.1315524 DOI: https://doi.org/10.31788/RJC.2020.1315524
Rasidah R, Aulianshah V. Black cumin potential anticancer effect of black cumin seed (Nigella sativa L.) extracts as determined by cytotoxicity test against larvae of Artemia salina leach using brine shrimp lethality test (BSLT). Int J PharmTech Res. 2020;13(2):25-9. https://doi.org/10.20902/ijptr.2019.130204 DOI: https://doi.org/10.20902/IJPTR.2019.130204
Kosasih K, Sumaryono W, Supriono A, Mudhakir D. Cytotoxicity of ethyl acetate extract of cantigi (Vaccinium varingiaefolium (Blume) Miq.) young leaves on Artemia salina L. larvae, MCF-7, T47D, and VERO cell lines. J Pharmacogn Phytochem. 2019;8(4):24-33.
Elsyana V, Bintang M, Priosoeryanto BP. Cytotoxicity and antiproliferative activity assay of clove mistletoe (Dendrophthoe pentandra (L.) Miq.) leaves extracts. Adv Pharmacol Pharm Sci. 2016;2016:3242698. https://doi.org/10.1155/2016/3242698 PMid:27099614 DOI: https://doi.org/10.1155/2016/3242698
Talukder ME, Momen F, Barua R, Sultana S, Yesmin F, Islam MS, et al. In vitro assessment of cytotoxic activity of hybrid variety of Momordica charantia (Bitter Gourd). J Phytopharmacol. 2020;9(6):445-8. DOI: https://doi.org/10.31254/phyto.2020.9611
Hamrun N, Nabilah T, Hasyim R, Ruslin M, Dammar I, Arianto MA. Toxicity test of bioactive red alga extract Eucheuma spinosum on shrimp Artemia salina leach. Sys Rev Pharm. 2020;11(5):672-6.
Ekonomou G, Lolas A, Castritsi-Catharios J, Neofitou C, Zouganelis GD, Tsiropoulos N, et al. Mortality and effect on growth of Artemia franciscana exposed to two common organic pollutants. water. 2019;11(8):1614. https://doi.org/10.3390/w11081614 DOI: https://doi.org/10.3390/w11081614
Begam KM, Ravichandran P, Manimekalai V. Phytochemical analysis of some selected varieties of Piper betle L. Int J Curr Pharm Res. 2018;10(2):89-93. https://doi.org/10.22159/ijcpr.2018v10i2.25884 DOI: https://doi.org/10.22159/ijcpr.2018v10i2.25884
Suri MA, Azizah Z, Asra R. A review-traditional use, phytochemical and pharmacological review of red betel leaves (Piper crocatum Ruiz and Pav). Asian J Pharm Res Dev. 2021;9(1):159-63.
Sharififar F, Assadipour A, Moshafi MH, Alishahi F, Mahmoudvand H. Bioassay screening of the essential oil and various extracts of Nigella sativa L. Seeds using brine shrimp toxicity assay. Herbal Med J. 2017;2(1):26-31.
Arif MZ, Zainuddin NA, Zakaria IS, Wahab WN, Sul’ain MD. Phytochemical screening and toxicological evaluation of Pyrrosia piloselloides extracts. Int Med J. 2018;25(3):177-80.
Jamil S, Khan RA, Afroz S, Ahmed S. Phytochemistry, brine shrimp lethality and mice acute oral toxicity studies on seed extracts of Vernonia anthelmintica. Pak J Pharm Sci. 2016;29(6):2053-7. PMid:28375123
Nur S, Mubarak F, Jannah C, Winarni DA, Rahman DA, Hamdayani LA, et al. Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fraction of Paku atai tuber (Angiopteris ferox Copel). Food Res. 2019;3(6):734-40. https://doi.org/10.26656/fr.2017.3(6).135 DOI: https://doi.org/10.26656/fr.2017.3(6).135
Delnavazi MR, Saiyarsarai P, Jafari-Nodooshan S, Khanavi M, Tavakoli S, Hadavinia H, et al. Cytotoxic flavonoids from the aerial parts of Stachys lavandulifolia Vahl. Pharm Sci. 2018;24:332-9. https://doi.org/10.15171/ps.2018.47 DOI: https://doi.org/10.15171/PS.2018.47
Dewijanti ID, Mangunwardoyo W, Artanti N, Hanafi M. Bioactivities of Salam leaf (Syzygium polyanthum (Wight) Walp). AIP Conf Proc. 2019;2168:020072. https://doi.org/10.1063/1.5132499 DOI: https://doi.org/10.1063/1.5132499
Boncan DA, Tsang SS, Li C, Lee IH, Lam HM, Chan TF, et al. Terpenes and terpenoids in plants: Interactions with environment and insects. Int J Mol Sci. 2020;21(19):7382. https://doi.org/10.3390/ijms21197382 PMid:33036280 DOI: https://doi.org/10.3390/ijms21197382
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, et al. Terpenoids as potential geroprotectors. Antioxidants. 2020;9(6):529. https://doi.org/10.3390/antiox9060529 PMid:32560451 DOI: https://doi.org/10.3390/antiox9060529
Prakash V. Terpenoids as cytotoxic compounds: A perspective. Pharmacogn Rev. 2018;12(24):166-76. DOI: https://doi.org/10.4103/phrev.phrev_3_18
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Commun. 2020;15(3):1-13. DOI: https://doi.org/10.1177/1934578X20903555
Nogueira TS, Passos MS, Nascimento LP, Arantes MB, Monteiro NO, Boeno SI, et al. Chemical compounds and biologic activities: A review of Cedrela genus. Molecules. 2020;25(2):5401. https://doi.org/10.3390/molecules25225401 PMid:33218181 DOI: https://doi.org/10.3390/molecules25225401
Waghulde S, Kale MK, Patil VR. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings. 2019;41(1):47. https://doi.org/10.3390/ecsoc-23-06703 DOI: https://doi.org/10.3390/ecsoc-23-06703
Ni YW, Lin KH, Chen KH, Wu CW, Chang YS. Flavonoid compounds and photosynthesis in Passiflora plant leaves under varying light intensities. Plants. 2020;9(5):633. https://doi.org/10.3390/plants9050633 PMid:32429275 DOI: https://doi.org/10.3390/plants9050633
Downloads
Published
How to Cite
License
Copyright (c) 2021 Nerdy Nerdy, Puji Lestari, Jon Piter Sinaga, Selamat Ginting, Nilsya Febrika Zebua, Vriezka Mierza, Tedy Kurniawan Bakri (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0