Evaluation of the Effect of Micro-osteoperforations versus Piezopuncture on the Rate of Orthodontic Tooth Movement Associated with Canine Retraction

Authors

  • Tarek Farag Department of Orthodontics and Pediatric Dentistry, National Research Centre, Cairo, Egypt https://orcid.org/0000-0002-0378-8628
  • Wael Mohamed Mubarak Refai Department of Orthodontic, Faculty of Dentistry, Minia University, Minya, Egypt
  • Ahmed Nasef Department of Orthodontic, Faculty of Dentistry, Minia University, Minya, Egypt
  • Omnia A. Elhiny Department of Orthodontics and Pediatric Dentistry, National Research Centre, Cairo, Egypt
  • Ahmed Sh. Hashem Department of Orthodontic, Faculty of Dentistry, Minia University, Minya, Egypt

DOI:

https://doi.org/10.3889/oamjms.2021.6173

Keywords:

Micro-osteoperforations, Piezocision, Accelerated tooth movement, Canine retraction

Abstract

AIM: The aim of the study was to investigate the effectiveness of using micro-osteoperforations (MOPs) or piezocision in accelerating tooth movement, during canine retraction, compared to standard canine retraction.

PATIENTS AND METHODS: A split-mouth study design was carried out with two Groups A and B. Each group contained 10 patients; in each patient, one side was used as a control side and the contralateral side received either MOPs (Group A) or piezocision (Group B). The assessment data were collected by direct intraoral measurements, every 2 weeks, over a 3 months retraction period.

RESULTS: Independent t-test, paired t-test, and ANOVA were used to analyze the results. In Group A, there was a statistically significant difference between the study and control sides (p < 0.001) with a total of 4.2 ± 0.5 mm canine retraction in the MOPs assisted canine retraction side versus a 2.8 ± 0.2 mm total canine retraction in the control side. For Group B, there was a statistically significant difference between the study and control sides (p < 0.001) with a total of 3.6 ± 0.4 mm canine retraction in the piezocision-assisted canine retraction side versus a 2.8 ± 0.2 mm total canine retraction in the control.

CONCLUSION: MOPs and piezocision techniques accelerated the rate of canine retraction during orthodontic treatment, with the MOPs being slightly more effective.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Fisher MA, Wenger RM, Hans MG. Pretreatment characteristics associated with orthodontic treatment duration. Am J Orthod Dentofac Orthop. 2010;137(2):178-86. https://doi.org/10.1016/j.ajodo.2008.09.028 PMid:20152672

Pandis N, Nasika M, Polychronopoulou A, Eliades T. External apical root resorption in patients treated with conventional and self-ligating brackets. Am J Orthod Dentofac Orthop. 2008;134(5):646-51. https://doi.org/10.1016/j.ajodo.2007.01.032 PMid:18984396

Bishara SE, Ostby AW. White spot lesions: Formation, prevention, and treatment. Semin Orthod. 2008;14(3):174-82. https://doi.org/10.1053/j.sodo.2008.03.002

Roykó A, Dénes Z, Razouk G. The relationship between the length of orthodontic treatment and patient compliance. Fogorv Sz. 1999;92(3):79-86. PMid:10205984

Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerated orthodontic tooth movement: A systematic review and meta-analysis. J Dent. 2014;42(10):1300-19. https://doi.org/10.1016/j.jdent.2014.07.013 PMid:25072362

Blanco JF, Diaz R, Gross HR. Effect of systemic administration of 1,25 di-hydroxy colecalciferol on acceleration of orthodontic tooth movement in humans. Rev Orthod. 2001;8:13-21.

Patil AK, Keluskar KM, Gaitonde SD. The clinical application of prostaglandin E1 on orthodontic tooth movement-a clinical trial. J Indian Orthod Soc. 2005;39(2):91-8. https://doi.org/10.1177/0974909820050204

Hou Y, Liang T, Luo C. Effects of IL-1 on experimental tooth movement in rabbits. Zhonghua Kou Qiang Yi Xue Za Zhi. 1997;32(1):46-8. PMid:10677947

Mohammed AH, Tatakis DN, Dziak R. Leukotrienes in orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1989;95(3):231-7. https://doi.org/10.1016/0889-5406(89)90053-x PMid:2538053

Rashid A, ElSharaby FA, Nassef EM, Mehanni S, Mostafa YA. Effect of platelet-rich plasma on orthodontic tooth movement in dogs. Orthod Craniofac Res. 2017;20(2):102-10. https://doi.org/10.1111/ocr.12146 PMid:28414871

Shirazi M, Ahmad Akhoundi MS, Javadi E, Kamali A, Motahhari P, Rashidpour M, et al. The effects of diode laser (660 nm) on the rate of tooth movements: An animal study. Lasers Med Sci. 2015;30(2):713-8. https://doi.org/10.1007/s10103-013-1407-1 PMid:23917413

Kim DH, Park YG, Kang SG. The effects of electrical current from a micro-electrical device on tooth movement. Korean J Orthod. 2008;38(5):337. https://doi.org/10.4041/kjod.2008.38.5.337

Showkatbakhsh R, Jamilian A, Showkatbakhsh M. The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod. 2010;11(4):e52-6. PMid:21490989

Xue H, Zheng J, Cui Z, Bai X, Li G, Zhang C, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. PLoS One. 2013;8(7):e68926. https://doi.org/10.1371/journal.pone.0068926 PMid:23894376

Abed S, Abed SS, Al-Bustani AI. Corticotomy assisted orthodontic canine retraction. J Baghdad Coll Dent. 2014;25:160-6. Available from: https://www.jbcd.uobaghdad.edu.iq/index.php/ jbcd/article/view/217. [Last accessed on 2021 May 06]. https://doi.org/10.12816/0015134

Wilcko W, Wilcko MT. Accelerating tooth movement: The case for corticotomy-induced orthodontics. Am J Orthod Dentofac Orthop. 2013;144(1):4-12. https://doi.org/10.1016/j.ajodo.2013.04.009 PMid:23810038

Alikhani M, Alansari S, Sangsuwon C, Alikhani M, Chou MY, Alyami B, et al. Micro-osteoperforations: Minimally invasive accelerated tooth movement. Semin Orthod. 2015;21(3):162-9. https://doi.org/10.1053/j.sodo.2015.06.002

Alkebsi A, Al-Maaitah E, Al-Shorman H, Abu Alhaija E. Three-dimensional assessment of the effect of micro-osteoperforations on the rate of tooth movement during canine retraction in adults with Class II malocclusion: A randomized controlled clinical trial. Am J Orthod Dentofac Orthop. 2018;153(6):771-85. https://doi.org/10.1016/j.ajodo.2017.11.026 PMid:29853235

Abbas NH, Sabet NE, Hassan IT. Evaluation of corticotomy-facilitated orthodontics and piezocision in rapid canine retraction. Am J Orthod Dentofacial Orthop. 2016;149(4):473-80. https://doi.org/10.1016/j.ajodo.2015.09.029 PMid:27021451

Yi J, Xiao J, Li Y, Li X, Zhao Z. Efficacy of piezocision on accelerating orthodontic tooth movement: A systematic review. Angle Orthod. 2017;87(4):491-8. https://doi.org/10.2319/01191-751.1 PMid:28429956

Cano J, Campo J, Bonilla E, Colmenero C. Corticotomy-assisted orthodontics. J Clin Exp Dent. 2012;4(1):54-9. https://doi.org/10.4317/jced.50642 PMid:24558526

Wang L, Lee W, Lei DL, Liu YP, Yamashita DD, Yen SL. Tissue responses in corticotomy and osteotomy-assisted tooth movement in the rat. Int J Oral Maxillofac Surg. 2009;38(5):473. https://doi.org/10.1016/j.ijom.2009.03.273

Mostafa YA, Fayed MM, Mehanni S, ElBokle NN, Heider AM. Comparison of corticotomy-facilitated vs standard tooth-movement techniques in dogs with miniscrews as anchor units. Am J Orthod Dentofac Orthop. 2009;136(4):570-7. https://doi.org/10.1016/j.ajodo.2007.10.052 PMid:19815161

Aboul-Ela SM, El-Beialy AR, El-Sayed KM, Selim EM, El-Mangoury NH, Mostafa YA. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitated orthodontics. Am J Orthod Dentofac Orthop. 2011;139(2):252-9. https://doi.org/10.1016/j.ajodo.2009.04.028 PMid:21300255

Al-Naoum F, Hajeer MY, Al-Jundi A. Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial. J Oral Maxillofac Surg. 2014;72(10):1880-9. https://doi.org/10.1016/j.joms.2014.05.003 PMid:25128922

Cassetta M, Di Carlo S, Giansanti M, Pompa V, Pompa G, Barbato E. The impact of osteotomy technique for corticotomy-assisted orthodontic treatment (CAOT) on oral health-related quality of life. Eur Rev Med Pharmacol Sci. 2012;16(12):1735-40. PMid:23161049

Sangsuwon C, Alansari S, Nervina J, Teixeira CC, Alikhani M. Micro-osteoperforations in accelerated orthodontics. Clin Dent Rev. 2018;2(1):1-10. https://doi.org/10.1007/s41894-017-0013-1

Abbas IT, Moutamed GM. Acceleration of orthodontic tooth movement by alveolar corticotomy using piezosurgery. J Am Sci. 2012;2(1545-1003):13-9. Available from: http://www.jofamericanscience.org/journals/am-sci/am0802/003_7870am0802_13_19.pdf. [Last accessed on 2021 Jan 30].

Mostafa YA, El-mangoury NH, Abouelezz A. Maximizing tissue response in selected subjects with anterior open bite. World J Orthod. 2009;10(3):187-795. PMid:19885419

Shahabee M, Shafaee H, Abtahi M, Rangrazi A, Bardideh E. Effect of micro-osteoperforation on the rate of orthodontic tooth movement-a systematic review and a meta-analysis. Eur J Orthod. 2020;42(2):211-21. https://doi.org/10.1093/ejo/cjz049 PMid:31215993

Fu T, Liu S, Zhao H, Cao M, Zhang R. Effectiveness and safety of minimally invasive orthodontic tooth movement acceleration: A systematic review and meta-analysis. J Dent Res. 2019;98(13):1469-79. https://doi.org/10.1177/0022034519878412 PMid:31589824

Keng FY, Quick AN, Swain MV, Herbison P. A comparison of space closure rates between preactivated nickel-titanium and titanium-molybdenum alloy T-loops: A randomized controlled clinical trial. Eur J Orthod. 2012;34(1):33-38. https://doi.org/10.1093/ejo/cjq156 PMid:21415288

Kulshrestha RS, Tandon R, Chandra P. Canine retraction: A systematic review of different methods used. J Orthod Sci. 2015;4(1):1-8. https://doi.org/10.4103/2278-0203.149608 PMid:25657985

Mohammed H, Rizk MZ, Wafaie K, Almuzian M. Effectiveness of nickel-titanium springs vs elastomeric chains in orthodontic space closure: A systematic review and meta-analysis. Orthod Craniofac Res. 2018;21(1):12-19. https://doi.org/10.1111/ocr.12210 PMid:29265578

Barlow M, Kula K. Factors influencing efficiency of sliding mechanics to close extraction space: A systematic review. Orthod Craniofac Res. 2008;11(2):65-73. https://doi.org/10.1111/j.1601-6343.2008.00421.x PMid:18416747

Alikhani M, Raptis M, Zoldan B, Sangsuwon C, Lee YB, Alyami B, et al. Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofac Orthop. 2013;144(5):639-48. https://doi.org/10.1016/j.ajodo.2013.06.017 PMid:24182579

Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, et al. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89(10):1135-41. PMid:20639508

Tsai CY, Yang TK, Hsieh HY, Yang LY. Comparison of the effects of micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Angle Orthod. 2016;86(4):558-64. https://doi.org/10.2319/052015-343.1 PMid:26595657

Figueiredo DS, Houara RG, Pinto LS, Diniz AR, de Araújo VE, Thabane L, et al. Effects of piezocision in orthodontic tooth movement: A systematic review of comparative studies. J Clin Exp Dent. 2019;11(11):e1078-92. https://doi.org/10.4317/jced.56328 PMid:31700581

Murphy KG, Wilcko MT, Wilcko WM, Ferguson DJ. Periodontal accelerated osteogenic orthodontics: A description of the surgical technique. J Oral Maxillofac Surg. 2009;67(10):2160-6. https://doi.org/10.1016/j.joms.2009.04.124 PMid:19761909

Al-Imam GM, Ajaj MA, Hajeer MY, Al-Mdalal Y, Almashaal E. Evaluation of the effectiveness of piezocision-assisted flapless corticotomy in the retraction of four upper incisors: A randomized controlled clinical trial. Dent Med Probl. 2019;56(4):385-394. https://doi.org/10.17219/dmp/110432 PMid:31794163

Downloads

Published

2021-08-07

How to Cite

1.
Farag T, Refai WMM, Nasef A, Elhiny OA, Hashem AS. Evaluation of the Effect of Micro-osteoperforations versus Piezopuncture on the Rate of Orthodontic Tooth Movement Associated with Canine Retraction. Open Access Maced J Med Sci [Internet]. 2021 Aug. 7 [cited 2022 Jan. 24];9(D):113-9. Available from: https://oamjms.eu/index.php/mjms/article/view/6173