Exosomes of Adipose-derived Stem Cells Conditioned Media Promotes Retinoblastoma and Forkhead-Box M1 Protein Expression
DOI:
https://doi.org/10.3889/oamjms.2021.6195Keywords:
Cellular senescence, Exosome, Adipose-derived stem cell-conditioned medium, Human dermal fibroblast, Retinoblastoma protein, Forkhead Box M1 proteinForkhead Box M1 proteinAbstract
BACKGROUND: In the senescence process, the retinoblastoma (Rb) protein binds to E2F in hypophosphorylated conditions, preventing the cell to enter the S-phase in the cell cycle. Human Forkhead Box M1 (FOXM1) protein, key regulator G1/S and G2/M phases, decreases in the senescence process. Many studies have been carried out to reverse this system, one of which used exosomes of adipose-derived stem c ells conditioned media (ADSC-CM). These exosomes contain a variety of specific proteins which have pro-proliferation properties, however, little is known on the role of these exosomes toward the change of phosphorylated Rb and FOXM1.
AIM: This study aims to find out the involvement of exosomes of ADSC-CM on these two proteins on senescence human dermal fibroblasts (HDFs).
METHODS: In vitro experiment was undergone randomization sample and non-blinded pre-/post-test control group. The primary culture of senescent HDFs was transfected with exosomes of ADSC-CM; then, its effect on migration and senescence reversal was observed through analyzing Sa-β-gal, Rb, and FOXM1 protein expression.
RESULTS: The expression of Sa-β-gal was higher in the control group. Our result demonstrated the exosome of ADSC-CM significantly induced the expression of Rb and FOXM1 protein in senescent HDFs (p < 0.05).
CONCLUSION: It proved that exosomes of ADSC-CM could shift the senescent fibroblast into metabolically active cells.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Behl C, Ziegler C. Cell cycle: The life cycle of a cell. In: Cell Aging: Molecular Mechanisms and Implications for Disease. New York: Springer; 2014. p. 9-19. DOI: https://doi.org/10.1007/978-3-642-45179-9_2
Bristow SL, Leman AR, Haase SB. Cell cycle-regulated transcription: Effectively using a genomics toolbox. Methods Mol Biol. 2014;1170:3-27. https://doi.org/10.1007/978-1-4939-0888-2_1 PMid:24906306 DOI: https://doi.org/10.1007/978-1-4939-0888-2_1
Spoerri L, Oo ZY, Larsen JE, Haass NK, Gabrielli B, Pavey S. Cell cycle checkpoint and dna damage response defects as anticancer targets: From molecular mechanisms to therapeutic opportunities. In: Wondrak G, editor. Stress Response Pathways in Cancer. Dordrecht: Springer; 2015. https://doi.org/10.1007/978-94-017-9421-3_3 DOI: https://doi.org/10.1007/978-94-017-9421-3_3
Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;1812(5):592-601. https://doi.org/10.1016/j.bbadis.2011.02.002 PMid:21315819 DOI: https://doi.org/10.1016/j.bbadis.2011.02.002
Hindley C, Philpott A. The cell cycle and pluripotency. Biochem J. 2013;451(2):135-43. https://doi.org/10.1042/BJ20121627 PMid:23535166 DOI: https://doi.org/10.1042/BJ20121627
Mens MM, Ghanbari M. Cell cycle regulation of stem cells by MicroRNAs. Stem Cell Rev. 2018;14(3):309-22. https://doi.org/10.1007/s12015-018-9808-y PMid:29541978 DOI: https://doi.org/10.1007/s12015-018-9808-y
Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, et al. Evolutionarily conserved multisubunit RBL2/ p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell. 2007;26(4):539-51. https://doi.org/10.1016/j.molcel.2007.04.015 PMid:17531812 DOI: https://doi.org/10.1016/j.molcel.2007.04.015
Grant GD, Brooks L, Zhang X, Mahoney JM, Martyanov V, Wood TA, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Moll Biol Cell. 2013;24(23):3634-50. https://doi.org/10.1091/mbc.e13-05-0264 PMid:24109597 DOI: https://doi.org/10.1091/mbc.e13-05-0264
Beishline K, Azizkhan-Clifford J. Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol Biol. 2014;1170:41-59. https://doi.org/10.1007/978-1-4939-0888-2_3 PMid:24906308 DOI: https://doi.org/10.1007/978-1-4939-0888-2_3
Zona S, Bella L, Burton MJ, de Moraes GN, Lam EW. FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta. 2014;1839(11):1316-22. https://doi.org/10.1016/j.bbagrm.2014.09.016 PMid:25287128 DOI: https://doi.org/10.1016/j.bbagrm.2014.09.016
Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: Lessons from transgenic mouse models. Cell Cycle. 2011;10(3):396-405. https://doi.org/10.4161/cc.10.3.14709 PMid:21270518 DOI: https://doi.org/10.4161/cc.10.3.14709
Lim S, Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 2013;140(15):3079-93. https://doi.org/10.1242/dev.091744 PMid:23861057 DOI: https://doi.org/10.1242/dev.091744
Koo C, Muir KW, Lam EW. FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819(1):28-37. https://doi.org/10.1016/j.bbagrm.2011.09.004 PMid:21978825 DOI: https://doi.org/10.1016/j.bbagrm.2011.09.004
Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128(4):1238-46. https://doi.org/10.1172/JCI95148 PMid:29608137 DOI: https://doi.org/10.1172/JCI95148
Sikora E. Rejuvenation of senescent cells-the road to postponing human aging and age-related disease? Exp Gerontol. 2013;48(7):661-6. https://doi.org/10.1016/j.exger.2012.09.008 PMid:23064316 DOI: https://doi.org/10.1016/j.exger.2012.09.008
van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439-46. https://doi.org/10.1038/nature13193 PMid:24848057 DOI: https://doi.org/10.1038/nature13193
Song SY, Jung JE, Jeon YR, Tark KC, Lew DH. Determination of adipose-derived stem cell application on photo-aged fibroblasts, based on paracrine function. Cytotherapy. 2011;13(3):378-84. PMid:21062113 DOI: https://doi.org/10.3109/14653249.2010.530650
Kokai LE, Marra KG, Rubin JP. Adipose stem cells: Biology and clinical applications for tissue repair and regeneration. Transl Res. 2014;163(4):399-408. https://doi.org/10.1016/j.trsl.2013.11.009 PMid:24361334 DOI: https://doi.org/10.1016/j.trsl.2013.11.009
Hur W, Lee HY, Min HS, Wufuer M, Lee C, Hur JA, et al. Regeneration of full-thickness skin defects by differentiated adipose-derived stem cells into fibroblast-like cells by fibroblast-conditioned medium. Stem Cell Res Ther. 2017;8(1):92. https://doi.org/10.1186/s13287-017-0520-7 PMid:28427476 DOI: https://doi.org/10.1186/s13287-017-0520-7
Shan X, Roberts C, Kim EJ, Brenner A, Grant G, Percec I. Transcriptional and cell cycle alterations mark aging of primary human adipose-derived stem cells. Stem Cells. 2017;35(5):1392-401. https://doi.org/10.1002/stem.2592 PMid:28211118 DOI: https://doi.org/10.1002/stem.2592
Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, et al. Exosomes released from human induces pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:49. https://doi.org/10.1186/s12967-015-0417-0 PMid:25638205 DOI: https://doi.org/10.1186/s12967-015-0417-0
Raik S, Kumar A, Bhattacharyya S. Insights into cell-free therapeutic approach: Role of stem cell soup-ernatant. Biotechnol Appl Biochem. 2018;65(2):104-18. https://doi.org/10.1002/bab.1561 PMid:28321921 DOI: https://doi.org/10.1002/bab.1561
Oh M, Lee J, Kim YJ, Rhee WJ, Park JH. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int J Mol Sci. 2018;19(6):1715. https://doi.org/10.3390/ijms19061715 PMid:29890746 DOI: https://doi.org/10.3390/ijms19061715
Schäuble S, Klement K, Marthandan S, Münch S, Heiland I, Schuster S, et al. Quantitative model of cell cycle arrest and cellular senescence in primary human fibroblasts. PLoS One. 2013;7(8):e42150. https://doi.org/10.1371/journal.pone.0042150 PMid:22879912 DOI: https://doi.org/10.1371/journal.pone.0042150
Takahashi A. A novel mechanism of irreversible cell cycle arrest in cellular senescence. J Oral Biosci. 2007;49(1):47-53. https://doi.org/10.1016/S1349-0079(07)80015-6 DOI: https://doi.org/10.1016/S1349-0079(07)80015-6
Choi EW, Seo MK, Woo EY, Kim SH, Park EJ, Kim S. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol. 2018;27(10):1170-2. https://doi.org/10.1111/exd.13451 PMid:28940813 DOI: https://doi.org/10.1111/exd.13451
Zhu L, Lu Z, Zhao H. Antitumor mechanisms when pRb and p53 are genetically inactivated. Oncogene. 2015;34(35):4547-57. https://doi.org/10.1038/onc.2014.399 PMid:25486431 DOI: https://doi.org/10.1038/onc.2014.399
Liao G, Li X, Zeng S, Liu C, Yang S, Yang L, et al. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal. 2018;16:57. https://doi.org/10.1186/s12964-018-0266-6 PMid:30208972 DOI: https://doi.org/10.1186/s12964-018-0266-6
Halasi M, Gartel AL. FOX(M1) news--it is cancer. Mol Cancer Ther. 2013;12(3):245-54. https://doi.org/10.1158/1535-7163.mct-12-0712 PMid:23443798 DOI: https://doi.org/10.1158/1535-7163.MCT-12-0712
Kelleher FC, O’Sullivan H. FOXM1 in sarcoma: Role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget. 2016;7(27):42792-804. https://doi.org/10.18632/oncotarget.8669 PMid:27074562 DOI: https://doi.org/10.18632/oncotarget.8669
Xu H, Yu S, Liu Q, Yuan X, Mani S, Pestell RG, et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol. 2017;10(1):97. https://doi.org/10.1186/s13045-017-0467-2 PMid:28438180 DOI: https://doi.org/10.1186/s13045-017-0467-2
Downloads
Published
How to Cite
License
Copyright (c) 2021 Sinta Murlistyarini, Lulus Putri Aninda, Sri Widyarti, Agustina Tri Endharti, Teguh Wahju Sardjono (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Universitas Brawijaya
Grant numbers 1/UN10.F08/PN/2019