Association between Three Variants in the PRKAA2 gene, rs2796498, rs9803799, and rs2746342, with 10-year ASCVD Risk on Newly Diagnosed T2DM in Yogyakarta, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2021.6213Keywords:
PRKAA2, Genetic variation, Atherosclerosis cardiovascular disease, Type 2 diabetes mellitus, Metformin, IndonesiaAbstract
BACKGROUND: AMPK has pivotal roles in glucose and lipid metabolism, including AMPKa2, which PRKAA2 encodes. Metformin as an anti-hyperglycemia agent acts through AMPK. Poor glycemia control among patients with type 2 diabetes mellitus (T2DM) could increase atherosclerosis cardiovascular disease (ASCVD) risk. Therefore, PRKAA2 genetic variation might contribute to 10-year ASCVD risk in patients with newly diagnosed T2DM receiving monotherapy metformin.
AIM: The study aimed to detect an association between PRKAA2 genetic variation with 10 year-ASCVD risk among newly diagnosed T2DM patients prescribed monotherapy metformin.
METHODS: This present study was a case-control study involving 107 participants. Analysis of PRKAA2 genetic variation was performed using the TaqMan assay.
RESULTS: A total of 91 participants who fulfilled our criteria enrolled in this study. Most of the participants were female, with mean age 54.40±7.75 years old, mean HbA1c level of 8.35±1.31%, and the lipid profile indicated normal conditions. There was a significant difference in age (p<0.01), HbA1c level (p=0.04), sex (p<0.01), and smoking status (p<0.01) between low-risk and high-risk groups. The GT genotype of rs9803799 had 187.86 times higher possibility for high-risk of 10-year ASCVD risk than TT genotype (OR=187.86, 95%CI:2.98–11863.51). The dominant model of rs9803799 showed that GT+GG had 94.33 times higher possibility for high-risk of 10-year ASCVD risk than TT genotype (OR=94.33; 95%CI:2.32–3841.21). Other results showed that G allele of rs980377 had 20.48 times higher possibility for high-risk of 10-year ASCVD risk than T allele (OR = 20.48; 95%CI:1.48–283.30). These associations were found after multivariate analysis.
CONCLUSION: Our findings indicated that rs9803799 as one of PRKAA2 genetic variations might impact the 10-year ASCVD risk among newly diagnosed T2DM patients receiving monotherapy metformin. After considering non-genetic factors, patient assessment should include potential genetic factors in cases with hyperglycemia involving treatment affecting glucose and lipid metabolism such as monotherapy metformin.
Keywords: PRKAA2, genetic variation, atherosclerosis cardiovascular disease, type 2 diabetes mellitus, metformin, Indonesia
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Hardie DG, Ross FA, Hawley SA. AMPK-a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251-62. https://doi.org/10.1038/nrm3311 PMid:22436748 DOI: https://doi.org/10.1038/nrm3311
Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: Mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4):e224-36. https://doi.org/10.1038/emm.2016.16 DOI: https://doi.org/10.1038/emm.2016.16
Meng S, Cao J, He Q, Xiong L, Chang E, Radovick S, et al. Metformin activates AMP-activated protein kinase by promoting formation of the αβγheterotrimeric complex. J Biol Chem. 2015;290(6):3393-802. https://doi.org/10.1074/jbc.m114.604421 PMid:25538235 DOI: https://doi.org/10.1074/jbc.M114.604421
Viollet B, Andreelli F, Jørgensen SB, Perrin C, Flamez D, Mu J, et al. Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models. Biochem Soc Trans. 2003;31(1):216-9. https://doi.org/10.1042/bst0310216 PMid:12546688 DOI: https://doi.org/10.1042/bst0310216
Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with Type 2 diabetes. Diabetes. 2002;51(7):2074-81. https://doi.org/10.2337/diabetes.51.7.2074 PMid:12086935 DOI: https://doi.org/10.2337/diabetes.51.7.2074
Musi N, Hayashi T, Fujii N, Hirshman MF, Witters LA, Goodyear LJ. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Metab. 2001;280(5):E677-84. https://doi.org/10.1152/ajpendo.2001.280.5.e677 PMid:11287349 DOI: https://doi.org/10.1152/ajpendo.2001.280.5.E677
Duan Q, Song P, Ding Y, Zhou M. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br J Pharmacol. 2017;174(13):2140-51. https://doi.org/10.1111/bph.13833 PMid:28436023 DOI: https://doi.org/10.1111/bph.13833
Xu X, Lu Z, Fassett J, Zhang P, Hu X, Liu X, et al. Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase α2. Hypertension. 2014;63(4):723-8. https://doi.org/10.1161/hypertensionaha.113.02619 PMid:24420540 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.113.02619
American Diabetes Association. Standards of medical care in diabetes. J Clin Appl Res Educ. 2020;43:1-212. DOI: https://doi.org/10.2337/dc20-S016
Bertoluci MC, Rocha VZ. Cardiovascular risk assessment in patients with diabetes. Diabetol Metab Syndr. 2017;9:25. https://doi.org/10.1186/s13098-017-0225-1 PMid:28435446 DOI: https://doi.org/10.1186/s13098-017-0270-9
Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjornsdottir S, et al. Excess mortality among persons with Type 2 diabetes. N Engl J Med. 2015;373(18):1720-32. https://doi.org/10.1056/nejmoa1504347 PMid:26510021 DOI: https://doi.org/10.1056/NEJMoa1504347
Sia HK, Kor CT, Tu ST, Liao PY, Chang YC. Predictors of treatment failure during the first year in newly diagnosed Type 2 diabetes patients: A retrospective, observational study. PeerJ. 2021;9:e11005. https://doi.org/10.7717/peerj.11005 PMid:33717708 DOI: https://doi.org/10.7717/peerj.11005
Rodriguez-Araujo G, Nakagami H. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc Endocrinol Metab. 2018;7(1):4-9. PMid:31646271 DOI: https://doi.org/10.1097/XCE.0000000000000141
Hegab Z, Gibbons S, Neyses L, Mamas MA. Role of advanced glycation end products in cardiovascular disease. World J Cardiol. 2012;4(4):90-102. https://doi.org/10.4330/wjc.v4.i4.90 PMid:22558488 DOI: https://doi.org/10.4330/wjc.v4.i4.90
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144-53. https://doi.org/10.1038/nrendo.2015.216 PMid:26678809 DOI: https://doi.org/10.1038/nrendo.2015.216
Haas AV, McDonnell ME. Pathogenesis of cardiovascular disease in diabetes. Endocrinol Metab Clin North Am. 2018;47(1):51-63. PMid:29407056 DOI: https://doi.org/10.1016/j.ecl.2017.10.010
Topel ML, Shen J, Morris AA, Mheid AA, Sher S, Dunbar SB, et al. Comparisons of the framingham and pooled cohort equation risk scores for detecting subclinical vascular disease in blacks versus whites. Am J Cardiol. 2018;121:564-9. https://doi.org/10.1016/j.amjcard.2017.11.031 PMid:29361288 DOI: https://doi.org/10.1016/j.amjcard.2017.11.031
Dwivani C, Harijadi K, Suhadi R. Perbandingan lima metode estimasi risiko 10 tahun penyakit kardiovaskuler pada masyarakat kabupaten sleman-Yogyakarta. J Manage Pharm Pract. 2018;8:59-69. DOI: https://doi.org/10.22146/jmpf.34469
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323. https://doi.org/10.1093/eurheartj/ehz687 PMid:31497854 DOI: https://doi.org/10.1093/eurheartj/ehz687
Nguyen NC, Pham HT, Pham DT, Hoang TM, Dam TP, Ho TH, et al. Comparison of 3 medicine groups used to control glycemic and glycated hemoglobin levels in newly diagnosed Type 2 diabetes patients. Open Access Maced J Med Sci. 2021;9:101-6. https://doi.org/10.3889/oamjms.2021.4672 DOI: https://doi.org/10.3889/oamjms.2021.4672
Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: A meta-analysis of randomised trials among people with Type 2 diabetes. Diabetologia. 2017;60(9):1620-29. https://doi.org/10.1007/s00125-017-4337-9 PMid:28770324 DOI: https://doi.org/10.1007/s00125-017-4337-9
Batchuluun B, Sonoda N, Takayanagi R. The cardiovascular effects of metformin: Conventional and new insights antidiabetic drug-metformin. J Endocrinol Diabetes Obes. 2014;2:1035.
Florez JC. The pharmacogenetics of metformin. Diabetologia. 2017;60(9):1648-55. PMid:28770331 DOI: https://doi.org/10.1007/s00125-017-4335-y
Lloyd-Jones DM, Braun LT, Ndumele CE, Smith SC Jr., Sperling LS, Virani SS, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: A special report from the American heart association and American college of cardiology. J Am Coll Cardiol. 2019;73(24):3153-67. https://doi.org/10.1016/j.jacc.2018.11.005 PMid:30423392 DOI: https://doi.org/10.1016/j.jacc.2018.11.005
Suhadi R, Virginia DM, Setiawan CH. Association of lipid profiles with 10-year atherosclerotic cardiovascular disease risk: Study among subjects in sleman district of yogyakarta Indonesia. Asian J Pharm Clin Res. 2017;10:166-70. https://doi.org/10.22159/ajpcr.2017.v10i12.20675 DOI: https://doi.org/10.22159/ajpcr.2017.v10i12.20675
Dhingra R, Vasan RS. Age as a risk factor. Med Clin North Am. 2012;96(1):87-91. https://doi.org/10.1016/j.mcna.2011.11.003 PMid:22391253 DOI: https://doi.org/10.1016/j.mcna.2011.11.003
Maharani A, Sujarwoto, Praveen D, Oceandy D, Tampubolon G, Patel A, et al. Cardiovascular disease risk factor prevalence and estimated 10-year cardiovascular risk scores in Indonesia: The SMARThealth extend study. PLoS One. 2019;14:e0215219. https://doi.org/10.1371/journal.pone.0215219 PMid:31039155 DOI: https://doi.org/10.1371/journal.pone.0215219
Cavero-Redondo I, Peleteiro B, Álvarez-Bueno C, Rodriguez- Artalejo F, Martinez-Vizcaino V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open. 2017;7(7):e015949. https://doi.org/10.1136/bmjopen-2017-015949 PMid:28760792 DOI: https://doi.org/10.1136/bmjopen-2017-015949
TODAY Study Group, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, McKay S, et al. A clinical trial to maintain glycemic control in youth with Type 2 diabetes. N Engl J Med. 2012;366(24):2247-56. https://doi.org/10.1056/nejmoa1109333 PMid:22540912 DOI: https://doi.org/10.1056/NEJMoa1109333
Harvey RE, Coffman KE, Miller VM. Women-specific factors to consider in risk, diagnosis and treatment of cardiovascular disease. Womens Health. 2015;11(2):239-57. https://doi.org/10.2217/whe.14.64 PMid:25776297 DOI: https://doi.org/10.2217/WHE.14.64
Norris CM, Yip CY, Nerenberg KA, Clavel MA, Pacheco C, Foulds HJ, et al. State of the science in women’s cardiovascular disease: A Canadian perspective on the influence of sex and gender. J Am Heart Assoc. 2020;9(4):e015634. PMid:32063119
Banks E, Welsh J, Joshy G, Martin M, Paige E, Korda RJ. Comparison of cardiovascular disease risk factors, assessment and management in men and women, including consideration of absolute risk: A nationally representative cross-sectional study. BMJ Open. 2020;10:e038761. https://doi.org/10.1136/bmjopen-2020-038761 DOI: https://doi.org/10.1136/bmjopen-2020-038761
Banks E, Joshy G, Korda RJ, Stavreski B, Soga K, Egger S, et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: Fatal and non-fatal outcomes in a large prospective Australian study. BMC Med. 2019;17(1):128. https://doi.org/10.1186/s12916-019-1351-4 PMid:31266500 DOI: https://doi.org/10.1186/s12916-019-1351-4
Xu K, Kosoy R, Shameer K, Kumar S, Liu L, Readhead B, et al. Genome-wide analysis indicates association between heterozygote advantage and healthy aging in humans. BMC Genet. 2019;20:1-14. https://doi.org/10.1186/s12863-019-0758-4 DOI: https://doi.org/10.1186/s12863-019-0758-4
Maodobra M. The role of single nucleotide polymorphisms of untranslated regions (Utrs) in insulin resistance pathogenesis in patients with Type 2 diabetes. In: Medical Complications of Type 2 Diabetes. India: InTech; 2011. https://doi.org/10.5772/23348 DOI: https://doi.org/10.5772/23348
Jablonski KA, McAteer JB, De Bakker PI, Franks PW, Pollin TI, Hanson RL, et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59(10):2672-81. https://doi.org/10.2337/db10-0543 PMid:20682687 DOI: https://doi.org/10.2337/db10-0543
Norrington K, Androulakis E, Christophides T. Interactions-interrelationships between genetics and environmental factors in cardiovascular disease. In: Cardiovascular Diseases: Genetic Susceptibility, Environmental Factors and their Interaction. Netherlands: Elsevier Inc.; 2016. p. 219-30. https://doi.org/10.1016/b978-0-12-803312-8.00010-0 DOI: https://doi.org/10.1016/B978-0-12-803312-8.00010-0
Ji F, Ning F, Duan H, Kaprio J, Zhang D, Zhang D, et al. Genetic and environmental influences on cardiovascular disease risk factors: A study of Chinese twin children and adolescents. Twin Res Hum Genet. 2014;17(2):72-9. https://doi.org/10.1017/thg.2014.5 PMid:24576535 DOI: https://doi.org/10.1017/thg.2014.5
Jermendy G, Horváth T, Littvay L, Steinbach R, Jermendy AL, Tarnoki AD, et al. Effect of genetic and environmental influences on cardiometabolic risk factors: A twin study. Cardiovasc Diabetol. 2011;10:96. https://doi.org/10.1186/1475-2840-10-96 PMid:22050728 DOI: https://doi.org/10.1186/1475-2840-10-96
Spencer-Jones NJ, Ge D, Snieder H, Perks U, Swaminathan R, Spector TD, et al. AMP-kinase alpha2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women. J Med Genet. 2006;43(12):936-42. https://doi.org/10.1136/jmg.2006.041988 PMid:16801347 DOI: https://doi.org/10.1136/jmg.2006.041988
Åkerborg Ö, Spalinskas R, Pradhananga S, Anil A, Hojer P, Poujade FA, et al. High-resolution regulatory maps connect cardiovascular risk variants to disease related pathways. Circ Genom Precis Med. 2019;12(3):e002353. https://doi.org/10.1101/376699 PMid:30786239 DOI: https://doi.org/10.1161/CIRCGEN.118.002353
Randrianarisoa E, Lehn-Stefan A, Krier J, Bohm A, Heni M, Angelis MH, et al. AMPK subunits harbor largely nonoverlapping genetic determinants for body fat mass, glucose metabolism, and cholesterol metabolism. J Clin Endocrinol Metab. 2020;105:dgz020. https://doi.org/10.1210/clinem/dgz020 PMid:31512724 DOI: https://doi.org/10.1210/jcem/dgz020
Luo S, Schooling CM, Wong IC, Yeung SL. Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: A Mendelian randomisation study. Diabetologia. 2020;63(11):2349-58. https://doi.org/10.1007/s00125-020-05243-z PMid:32748028 DOI: https://doi.org/10.1007/s00125-020-05243-z
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 2019;29(6):1511-23.e5. https://doi.org/10.1016/j.celrep.2019.09.070 PMid:31693892 DOI: https://doi.org/10.1016/j.celrep.2019.09.070
Agius L, Ford BE, Chachra SS. The metformin mechanism on gluconeogenesis and AMPK activation: The metabolite perspective. Int J Mol Sci. 2020;21(9):3240. https://doi.org/10.3390/ijms21093240 PMid:32375255 DOI: https://doi.org/10.3390/ijms21093240
Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011;60(6):1770-78. https://doi.org/10.2337/db10-0351 PMid:21562078 DOI: https://doi.org/10.2337/db10-0351
Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: An in vitro study. PLoS One. 2014;9(8):e104888. https://doi.org/10.1371/journal.pone.0104888 PMid:25127116 DOI: https://doi.org/10.1371/journal.pone.0104888
Soraya H, Clanachan AS, Rameshrad M, Maleki-Dizaji N, Ghazo-Khansari M, Garjani A. Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction. Eur J Pharmacol. 2014;737:77-84. https://doi.org/10.1016/j.ejphar.2014.05.003 PMid:24842192 DOI: https://doi.org/10.1016/j.ejphar.2014.05.003
Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic Biol Med. 2018;118:85-97. https://doi.org/10.1016/j.freeradbiomed.2018.02.031 PMid:29499335 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.02.031
Lu Q, Li X, Liu J, Sun X, Rousselle T, Ren D, et al. AMPK is associated with the beneficial effects of antidiabetic agents on cardiovascular diseases. Biosci Rep. 2019;39(2):BSR20181995. https://doi.org/10.1042/bsr20181995 PMid:30710062 DOI: https://doi.org/10.1042/BSR20181995
Downloads
Published
How to Cite
License
Copyright (c) 2021 Dita Maria Virginia, Mae Sri Hartati Wahyuningsih, Dwi Aris Agung Nugrahaningsih (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Lembaga Pengelola Dana Pendidikan
Grant numbers 201812220413569 -
Universitas Gadjah Mada
Grant numbers RTA 2488/UN1.P.III/DIT-LIT/PT/2020