Innovative Non-Irradiating and Non-Invasive Per Fraction Control System in Radiotherapy: Surface-Guided Radiation Therapy Experience of Casablanca Cancer Center

Authors

  • Asmaa Naim Mohammed VI University of Health Sciences (UM6SS)
  • Safae Mansouri Department of Radiation Oncology, Oncology Center of Meknes, Meknès, Morocco
  • Kamal Saidi Department of Radiotherapy, Casablanca Cancer Center, Cheikh Khalifa Casablanca, Casablanca, Morocco; Laboratory of Sciences and Health Technologies, Hassan First University of Settat, High Institute of Health Sciences, Settat, Morocco
  • Redouane ELBaydaoui Laboratory of Sciences and Health Technologies, Hassan First University of Settat, High Institute of Health Sciences, Settat, Morocco
  • Mohamed Reda Mesradi Laboratory of Sciences and Health Technologies, Hassan First University of Settat, High Institute of Health Sciences, Settat, Morocco

DOI:

https://doi.org/10.3889/oamjms.2021.6230

Keywords:

Surface-guided radiotherapy, Setup, Intrafraction, Fast irradiation, Non-invasive irradiation, Cutaneous surface, Positioning, Monitoring

Abstract

Purpose: Evaluation of the added value of radiotherapy guided by the cutaneous

 

surface in the positioning and monitoring of the radiotherapy

 

Patients and Methods: This study included 21 consecutive patients treated with an

 

accelerator dedicated to "True Beam®" stereotactic radiotherapy whose sessions were

 

monitored by an Optical Surface Monitoring System: "OSMS®". Excluded from our

 

study were treatments controlled exclusively by radiological imaging (IGRT).

 

Positioning variabilities were compared between conventional imaging and skin

 

surface infrared (OSMS) monitoring. Conventional imaging was in the form of

 

standard radiography (KV) performed during the treatment session or three-

 

dimensional by a series of Cone Beam computerized tomography (CBCT) scanned

 

images made at the beginning and end of The total time of the session and

 

the positioning variability’s in the 3 planes were

 

14

 

Results: The results of our study show that the cutaneous surface monitoring allowed

 

to obtain a faster alignment of the patient with an improvement in the overall time of

 

the session with a mean at 32% [14.5-49.27%], likewise a sub-millimeter positioning

 

quality for all locations with a median longitudinal distance of 0.02 cm [0-0.66], 01

 

cm verticality [0-0.32] and laterality 0.02 cm [0-0.77] This benefit is significantly

 

greater for cerebral and Head and neck’s localizations

 

21

 

Conclusion: Optical Surface Monitoring System (OSMS®) is a non-invasive and non-

 

irradiating means that allows reliable and fast

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Brahme A, Nyman P, Skatt BB. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys. 2008;35(5):1670-81. https://doi.org/10.1118/1.2889720 PMid:18561642 DOI: https://doi.org/10.1118/1.2889720

Hoisak JD, Pawlicki T. The role of optical surface imaging systems in radiation therapy. Semin Radiat Oncol. 2018;28(3):185-93. PMid:29933878 DOI: https://doi.org/10.1016/j.semradonc.2018.02.003

Lewis BC, Snyder WJ, Kim S, Kim T. Monitoring frequency of intra-fraction patient motion using the ExacTrac system for LINAC-based SRS treatments. J Appl Clin Med Phys. 2018;19(3):58-63. https://doi.org/10.1002/acm2.12279 PMid:29577592 DOI: https://doi.org/10.1002/acm2.12279

Pycinski B, Czajkowska J, Badura P, Juszczyk J, Pietka E. Time-of-flight camera, optical tracker and computed tomography in pairwise data registration. PLoS One. 2016;11(7):e0159493. https://doi.org/10.1371/journal.pone.0159493 PMid:27434396 DOI: https://doi.org/10.1371/journal.pone.0159493

Stanley DN, Mcconnell KA, Kirby N, Gutiérrez AN, Papanikolaou N, Rasmussen K. Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis. J Appl Clin Med Phys. 2017;18(6):58-61. https://doi.org/10.1002/acm2.12183 PMid:28901684 DOI: https://doi.org/10.1002/acm2.12183

Wikström K, Nilsson K, Isacsson U, Ahnesjö A. A comparison of patient position displacements from body surface laser scanning and cone beam CT bone registrations for radiotherapy of pelvic targets. Acta Oncol (Madr). 2014;53(2):268-77. https://doi.org/10.3109/0284186x.2013.802836 PMid:23786175 DOI: https://doi.org/10.3109/0284186X.2013.802836

Murphy MJ, Balter J, Balter S, Jiang SB. The management of imaging dose during image-guided radiotherapy: Report of the AAPM task group 75. Med Phys. 2007;34(10):4041-63. https://doi.org/10.1118/1.2775667 PMid:17985650 DOI: https://doi.org/10.1118/1.2775667

Carl G, Reitz D, Schönecker S, Pazos M, Freislederer P, Reiner M, et al. Optical surface scanning for patient positioning in radiation therapy: A prospective analysis of 1902 fractions. Technol Cancer Res Treat. 2018;17:1533033818806002. https://doi.org/10.1177/1533033818806002 PMid:30453842 DOI: https://doi.org/10.1177/1533033818806002

Wagner TH, Meeks SL, Bova FJ, Friedman WA, Willoughby TR, Kupelian PA, et al. Opticaltracking technology in stereotactic radiation therapy. Med Dosim. 2007;32(2):111-20. https://doi.org/10.1016/j.meddos.2007.01.008 PMid:17472890 DOI: https://doi.org/10.1016/j.meddos.2007.01.008

Cerviño LI, Pawlicki T, Jiang SB, Lawson JD. Frame-less and mask-less cranial stereotactic radiosurgery: A feasibility study. Phys Med Biol. 2010;55(7):1863-73. https://doi.org/10.1088/0031-9155/55/7/005 PMid:20224158 DOI: https://doi.org/10.1088/0031-9155/55/7/005

Wiersma RD, Tomarken SL, Grelewicz Z, Belcher AH, Kang H. Spatial and temporal performance of 3D optical surface imaging for real time head position tracking. Med Phys. 2013;40(11):111712. https://doi.org/10.1118/1.4823757 PMid:24320420 DOI: https://doi.org/10.1118/1.4823757

Tarnavski N, Engelholm SA, Af Rosenschold PM. Fast intra-fractional image guidance with 6D positioning correction reduces delivery uncertainty for stereotactic radiosurgery and radiotherapy. J Radiosurg SBRT. 2016;4(1):15-20. https://doi.org/10.1016/s0167-8140(15)40772-8 PMid:29296422 DOI: https://doi.org/10.1016/S0167-8140(15)40772-8

Zhao B, Maquilan G, Jiang S, Schwartz DL. Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. J Appl Clin Med Phys. 2018;19(1):17-24. https://doi.org/10.1002/acm2.12211 PMid:29119677 DOI: https://doi.org/10.1002/acm2.12211

Li G, Lovelock DM, Mechalakos J. Migration from full-head mask to “open-face” mask for immobilization of patients with head and neck cancer. J Appl Clin Med Phys. 2013;14(5):243-54. https://doi.org/10.1120/jacmp.v14i5.4400 PMid:24036878 DOI: https://doi.org/10.1120/jacmp.v14i5.4400

Covington EL, Fiveash JB, Wu X, Brezovich I, Willey CD, Riley K, et al. Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. J Appl Clin Med Phys. 2019;20(6):91-8. https://doi.org/10.1002/acm2.12611 PMid:31095866 DOI: https://doi.org/10.1002/acm2.12611

Reitz D, Carl G, Schönecker S, Pazos M, Freislederer P, Niyazi M, et al. Realtime intra-fraction motion management in breast cancer radiotherapy: Analysis of 2028 treatment sessions. Radiat Oncol. 2018;13(1):128. https://doi.org/10.1186/s13014-018-1072-4 PMid:30012156 DOI: https://doi.org/10.1186/s13014-018-1072-4

Schaerer J, FassI A, Riboldi M, Cerveri P, Baroni G, Sarrut D. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration. Phys Med Biol. 2012;57(2):357-73. https://doi.org/10.1088/0031-9155/57/2/357 PMid:22170786 DOI: https://doi.org/10.1088/0031-9155/57/2/357

Aznar MC, Maraldo MV, Schut DA, Lundemann M, Brodin NP, Vogelius IR, et al. Minimizing late effects for patients with mediastinal Hodgking lymphoma: Deep inspiration breath hold, IMRT, or both? Int J Radiat Oncol Biol Phys. 2015;92(1):196-74. https://doi.org/10.1016/j.ijrobp.2015.01.013 PMid:25754634 DOI: https://doi.org/10.1016/j.ijrobp.2015.01.013

Haraldsson A, Ceberg S, Crister C, Engelholm S, Bäck SÅ, Engström PE. PO0978 accurate positioning with decreased treatment time using surface guided tomotherapy. Radiother Oncol. 2019;133:S534-5. https://doi.org/10.1016/s0167-8140(19)31398-2 DOI: https://doi.org/10.1016/S0167-8140(19)31398-2

Willoughby T, Lehmann J, Bencomo JA, Jani SK, Santanam L, Sethi A, et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of task group 147. Med Phys. 2012;39(4):1728-47. https://doi.org/10.1118/1.3681967 PMid:22482598 DOI: https://doi.org/10.1118/1.3681967

Freislederer P, Kügele M, Öllers M, Swinnen A, Sauer TO, Bert C, et al. Recent advanced in surface guided radiation therapy. Radiat Oncol. 2020;15:187. https://doi.org/10.1186/s13014-020-01661-w PMid:32736570 DOI: https://doi.org/10.1186/s13014-020-01661-w

Downloads

Published

2021-08-08

How to Cite

1.
Naim A, Mansouri S, Saidi K, ELBaydaoui R, Mesradi MR. Innovative Non-Irradiating and Non-Invasive Per Fraction Control System in Radiotherapy: Surface-Guided Radiation Therapy Experience of Casablanca Cancer Center. Open Access Maced J Med Sci [Internet]. 2021 Aug. 8 [cited 2024 Apr. 23];9(B):826-30. Available from: https://oamjms.eu/index.php/mjms/article/view/6230

Most read articles by the same author(s)