The Role of Lipid and the Benefit of Statin in Augmenting Rifampicin Effectivity for a Better Leprosy Treatment

Authors

  • Muhammad Habiburrahman Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Referral Hospital, Jakarta, Indonesia https://orcid.org/0000-0001-6372-8240
  • Haekal Ariq Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Referral Hospital, Jakarta, Indonesia https://orcid.org/0000-0003-0686-9527
  • Shannaz Nadia Yusharyahya Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Referral Hospital, Jakarta, Indonesia https://orcid.org/0000-0003-4786-3375

DOI:

https://doi.org/10.3889/oamjms.2021.6263

Keywords:

Anti-inflammatory, Bactericidal, Leprosy, Lipids, Rifampicin, Statins

Abstract

Although leprosy remains as a serious disease of the skin and nervous system, the current treatment is still lacking in its effectiveness. This literature review will explore the association of lipid and leprosy, as well as the potential of statin and other lipid-lowering agents as adjunctive drugs to combat leprosy. Articles were searched through the PubMed, EBSCOhost, and Google Scholar with the keywords: immunomodulation, lipid-body, lipids, leprosy, Mycobacterium leprae, pathogenesis, rifampin or rifampicin, and statins. A manual searching is also carried out to find an additional relevant information to make this literature review more comprehensive. The literatures showed that lipids are highly correlated with leprosy through alterations in serum lipid profile, metabolism, pathogenesis, and producing oxidative stress. Statins can diminish lipid utilization in the pathogenesis of leprosy and show a mycobactericidal effect by increasing the effectiveness of rifampicin and recover the function of macrophages. In addition, Statins have anti-inflammatory properties which may aid in preventing type I and II reactions in leprosy. Standard multidrug therapy might reduce the efficacy of statins, but the effect is not clinically significant. The statin dose-response curve also allows therapeutic response to be achieved with minimal dose. The various pleiotropic effects of statins make it a potential adjunct to standard treatment for leprosy in the future.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Wibawa T, Satoto TB. Magnitude of neglected tropical diseases in Indonesia at postmillennium development goals era. J Trop Med. 2016;2016:5716785. https://doi.org/10.1155/2016/5716785 DOI: https://doi.org/10.1155/2016/5716785

World Health Organization. Global leprosy update, 2016: Accelerating reduction of disease burden. Relev Epidemiol Hebd. 2017;92(35):501-19.

Kemenkes RI. Hapuskan Stigma dan Diskriminasi terhadap Kusta (In Indonesian). InfoDatin Pusat Data dan Informasi Kementrian Kesehatan RI. Indonesia: Kementerian Kesehatan Republik Indonesia; 2018. p. 1-11. Available from: https://www.pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/infoDatin-kusta-2018.pdf. https://doi.org/10.32922/jkp.v8i2.186. [Last accessed on 2021 Mar 19]. DOI: https://doi.org/10.32922/jkp.v8i2.186

Naaz F, Mohanty PS, Bansal AK, Kumar D, Gupta UD. Challenges beyond elimination in leprosy. Int J Mycobacteriol. 2017;6(3):222-8. https://doi.org/10.4103/ijmy.ijmy_70_17 PMid:28776519 DOI: https://doi.org/10.4103/ijmy.ijmy_70_17

Cambau E, Saunderson P, Matsuoka M, Cole ST, Kai M, Suffys P, et al. Antimicrobial resistance in leprosy: Results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin Microbiol Infect. 2018;24(12):1305-10. https://doi.org/10.1016/j.cmi.2019.01.004 PMid:29496597 DOI: https://doi.org/10.1016/j.cmi.2019.01.004

Trindade MA, Benard G, Ura S, Ghidella CC, Avelleira JC, Vianna FR, et al. Granulomatous reactivation during the course of a leprosy infection: Reaction or relapse. PLoS Negl Trop Dis. 2010;4(12):1-5. https://doi.org/10.1371/journal.pntd.0000921 PMid:21200422 DOI: https://doi.org/10.1371/journal.pntd.0000921

Ma Y, Wen X, Peng J, Lu Y, Guo Z, Lu J. Systematic review and meta-analysis on the association between outpatient statins use and infectious disease-related mortality. PLoS One. 2012;7(12):e51548. https://doi.org/10.1371/journal.pone.0051548 PMid:23284711 DOI: https://doi.org/10.1371/journal.pone.0051548

Chopra V, Rogers MA, Buist M, Govindan S, Lindenauer PK, Saint S, et al. Is statin use associated with reduced mortality after pneumonia? A systematic review and meta-analysis. Am J Med. 2012;125(11):1111-23. https://doi.org/10.1016/j.amjmed.2012.04.011 PMid:22835463 DOI: https://doi.org/10.1016/j.amjmed.2012.04.011

Haeri MR, White K, Qharebeglou M, Ansar MM. Cholesterol suppresses antimicrobial effect of statins. Iran J Basic Med Sci. 2015;18(12):1253-6. PMid:26877857

Mattos KA, Oliveira VC, Berrêdo-Pinho M, Amaral JJ, Antunes LC, Melo RC, et al. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: A potential target for new drugs for leprosy treatment. Cell Microbiol. 2014;16(6):797-815. https://doi.org/10.1111/cmi.12279 PMid:24552180 DOI: https://doi.org/10.1111/cmi.12279

Lobato LS, Rosa PS, Da Silva Ferreira J, Da Silva Neumann A, Da Silva MG, Nascimento DC, et al. Statins increase rifampin mycobactericidal effect. Antimicrob Agents Chemother. 2014;58(10):5766-74. https://doi.org/10.1128/aac.01826-13 PMid:25049257 DOI: https://doi.org/10.1128/AAC.01826-13

Paumelle R, Blanquart C, Briand O, Barbier O, Duhem C, Woerly G, et al. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway. Circ Res. 2006;98(3):361-9. https://doi.org/10.1161/01.res.0000202706.70992.95 PMid:16397146 DOI: https://doi.org/10.1161/01.RES.0000202706.70992.95

Chapel H, Haeney M, Misbah S, Snowden N. Essentials of Clinical Immunology. 6th ed. Chicester: Wiley-Blackwell; 2014. p. 350. Available from http://www.med-mu.com/wp-content/uploads/2018/06/Essentials-of-Clinical-Immunology-6E-Chapel-Haeney-Misbah-_-Snowden.pdf. https://doi.org/10.1046/j.1365-2249.1997.4291322.x. [Last accessed on 2021 Mar 19]. DOI: https://doi.org/10.1046/j.1365-2249.1997.4291322.x

Kim YC, Kim KK, Shevach EM. Simvastatin induces Foxp3+ T regulatory cells by modulation of transforming growth factorbeta signal transduction. Immunology. 2010;130(4):484-93. https://doi.org/10.1111/j.1365-2567.2010.03269.x PMid:20408897 DOI: https://doi.org/10.1111/j.1365-2567.2010.03269.x

Zhang X, Tao Y, Troiani L, Markovic-Plese S. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J Immunol. 2011;187(6):3431-7. https://doi.org/10.4049/jimmunol.1100580 PMid:21856936 DOI: https://doi.org/10.4049/jimmunol.1100580

Zhang X, Jin J, Peng X, Ramgolam VS, Markovic-Plese S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J Immunol. 2008;180(10):6988-96. https://doi.org/10.4049/jimmunol.180.10.6988 PMid:18453621 DOI: https://doi.org/10.4049/jimmunol.180.10.6988

Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997;100(11):2671-9. https://doi.org/10.1172/jci119812 PMid:9389730 DOI: https://doi.org/10.1172/JCI119812

The Joanna Briggs Institute. The Joanna Briggs Institute Critical Appraisal Tools: Checklist for Analytical Cross Sectional Studies. South Australia: Joanna Briggs Institute, University of Adelaide; 2017. p. 1-7. Available from: https://www.joannabriggs.org/sites/default/files/2019-05/JBI_Critical_Appraisal-Checklist_for_Analytical_Cross_Sectional_Studies2017_0.pdf. https://doi.org/10.11124/01938924-201109481-00003 [Last accessed on 2021 Mar 19]. DOI: https://doi.org/10.11124/01938924-201109481-00003

Oxford CEEBM. Oxford Centre for Evidence-Based Medicine: Levels of Evidence. Center for Evidence-based Medicine; 2009. Available from: https://www.cebm.ox.ac.uk/resources/levels-ofevidence/oxford-centre-for-evidence-based-medicine-levels-ofevidence-march-2009. [Last accessed on 2021 Mar 19]. https://doi.org/10.1136/ebm.14.3.69-a DOI: https://doi.org/10.1136/ebm.14.3.69-a

Lemes RM, Silva CA, Marques MÂ, Atella GC, Nery JA, Nogueira MR, et al. Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Negl Trop Dis. 2020;14(3):1-24. https://doi.org/10.1371/journal.pntd.0008138 PMid:32226013 DOI: https://doi.org/10.1371/journal.pntd.0008138

da Silva DS, Teixeira LA, Beghini DG, da Silva Ferreira AT, de Berredo Moreira Pinho M, et al. Blood coagulation abnormalities in multibacillary leprosy patients. PLoS Negl Trop Dis. 2018;12(3):1-21. PMid:29565968 DOI: https://doi.org/10.1371/journal.pntd.0006214

Sarwar G, Sultana V, Gul A, Ara J. Comparative study of lipid profile in multibacillary and paucibacillary leprosy patients. J Bahria Univ Med Dent Coll. 2016;6(1):43-6.

Amaral JJ, Antunes LC, de Macedo CS, Mattos KA, Han J, Pan J, et al. Metabonomics reveals drastic changes in antiinflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease. PLoS Negl Trop Dis. 2013;7(8):e2381. https://doi.org/10.1371/journal.pntd.0002381 PMid:23967366 DOI: https://doi.org/10.1371/journal.pntd.0002381

Al-Mubarak R, Vander Heiden J, Broeckling CD, Balagon M, Brennan PJ, Vissa VD. Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: Potential markers for susceptibility and pathogenesis. PLoS Negl Trop Dis. 2011;5(9):e1303. https://doi.org/10.1371/journal.pntd.0001303 PMid:21909445 DOI: https://doi.org/10.1371/journal.pntd.0001303

Nwosu C, Nwosu S. Abnormalities in serum lipids and liver fuction in Nigeria patients with leprosy. JOMIP. 2001;2:5-10.

Bhadwat VR, Borade VB. Increased lipid peroxidation in lepromatous leprosy. Indian J Dermatol Venereol Leprol. 2000;66(3):121-5. PMid:20877051

Silva RV, de Araújo RS, Aarão TL, da Silva Costa PD, Sousa JR, Quaresma JA. Correlation between therapy and lipid profile of leprosy patients: Is there a higher risk for developing cardiovascular diseases after treatment? Infect Dis Poverty. 2017;6(1):1-7. https://doi.org/10.1186/s40249-017-0295-1 PMid:28457229 DOI: https://doi.org/10.1186/s40249-017-0295-1

Gupta A, Koranne R, Kaul N. Study of serum lipids in leprosy. Indian J Dermatol Venereol Leprol. 2002;68(5):262-6. PMid:17656962

Miyamoto Y, Mukai T, Matsuoka M, Kai M, Maeda Y, Makino M. Profiling of intracellular metabolites: An approach to understanding the characteristic physiology of Mycobacterium leprae. PLoS Negl Trop Dis. 2016;10(8):1-12. https://doi.org/10.1371/journal.pntd.0004881 PMid:27479467 DOI: https://doi.org/10.1371/journal.pntd.0004881

Mattos KA, D’Avila H, Rodrigues LS, Oliveira VG, Sarno EN, Atella GC, et al. Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol. 2010;87(3):371-84. https://doi.org/10.1189/jlb.0609433 PMid:19952355 DOI: https://doi.org/10.1189/jlb.0609433

Mattos KA, Oliveira VG, D’Avila H, Rodrigues LS, Pinheiro RO, Sarno EN, et al. TLR6-driven lipid droplets in Mycobacterium leprae-infected schwann cells: Immunoinflammatory platforms associated with bacterial persistence. J Immunol. 2011;187(5):2548-58. https://doi.org/10.4049/jimmunol.1101344 PMid:21813774 DOI: https://doi.org/10.4049/jimmunol.1101344

Cruz D, Watson AD, Miller CS, Montoya D, Ochoa MT, Sieling PA, et al. Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J Clin Invest. 2008;118(8):2917-28. https://doi.org/10.1172/jci34189 PMid:18636118 DOI: https://doi.org/10.1172/JCI34189

Alter A, Grant A, Abel L, Alcaïs A, Schurr E. Leprosy as a genetic disease. Mamm Genome. 2011;22(1-2):19-31. https://doi.org/10.1007/s00335-010-9287-1 PMid:20936290 DOI: https://doi.org/10.1007/s00335-010-9287-1

Elamin AA, Stehr M, Singh M. Lipid droplets and Mycobacterium leprae infection. J Pathog. 2012;2012:361374. PMid:23209912 DOI: https://doi.org/10.1155/2012/361374

Melo RC, Dvorak AM. Lipid body-phagosome interaction in macrophages during infectious diseases: Host defense or pathogen survival strategy? PLoS Pathog. 2012;8(7):e1002729. https://doi.org/10.1371/journal.ppat.1002729 PMid:22792061 DOI: https://doi.org/10.1371/journal.ppat.1002729

Bickel PE, Tansey JT, Welte MA. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta. 2009;1791(6):419-40. https://doi.org/10.1016/j.bbalip.2009.04.002 PMid:19375517 DOI: https://doi.org/10.1016/j.bbalip.2009.04.002

Degang Y, Akama T, Hara T, Tanigawa K, Ishido Y, Gidoh M, et al. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages. PLoS Negl Trop Dis. 2012;6(12):e1936. https://doi.org/10.1371/journal.pntd.0001936 PMid:23236531 DOI: https://doi.org/10.1371/journal.pntd.0001936

Wan HC, Melo RC, Jin Z, Dvorak AM, Weller PF. Roles and origins of leukocyte lipid bodies: Proteomic and ultrastructural studies. FASEB J. 2007;21(1):167-78. https://doi.org/10.1096/fj.06-6711com PMid:17135363 DOI: https://doi.org/10.1096/fj.06-6711com

Huang S, Jiang L, Zhuang X. Possible roles of membrane trafficking components for lipid droplet dynamics in higher plants and green algae. Front Plant Sci. 2019;10:207. https://doi.org/10.3389/fpls.2019.00207 PMid:30858860 DOI: https://doi.org/10.3389/fpls.2019.00207

Stehr M, Singh M. Lipid inclusions in mycobacterial infections. In: Tuberculosis-Current Issues in Diagnosis and Management. India: InTech; 2013. p. 31-46. DOI: https://doi.org/10.5772/54526

Daleke MH, Cascioferro A, de Punder K, Ummels R, Abdallah AM, van der Wel N, et al. Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J Biol Chem. 2011;286(21):19024-34. https://doi.org/10.1074/jbc.m110.204966 PMid:21471225 DOI: https://doi.org/10.1074/jbc.M110.204966

World Health Organization. Effectiveness of MDT: FAQ. Leprosy Elimination. Geneva: World Health Organization; 2020. Available from: https://www.who.int/lep/mdt/effectiveness/en. [Last accessed on 2020 Dec 30]. https://doi.org/10.4269/ajtmh.2009.81.330

Fajardo TT, Villahermosa L, Pardillo FE, Abalos RM, Burgos J, Dela Cruz E, et al. A comparative clinical trial in multibacillary leprosy with long-term relapse rates of four different multidrug regimens. Am J Trop Med Hyg. 2009;81(2):330-4. PMid:19635893 DOI: https://doi.org/10.4269/ajtmh.2009.81.330

The Leprosy Unit. Risk of relapse in leprosy. The leprosy unit, WHO. Indian J Lepr. 1995;67(1):13-26. PMid:7622926

Malathi M, Thappa DM. Fixed-duration therapy in leprosy: Limitations and opportunities. Indian J Dermatol. 2013;58(2):93-100. https://doi.org/10.4103/0019-5154.108029 PMid:23716796 DOI: https://doi.org/10.4103/0019-5154.108029

Nakata N, Kai M, Makino M. Mutation analysis of the Mycobacterium leprae folP1 gene and dapsone resistance. Antimicrob Agents Chemother. 2011;55(2):762-6. https://doi.org/10.1128/aac.01212-10 PMid:21115799 DOI: https://doi.org/10.1128/AAC.01212-10

Rosdiana A, Hadisaputri YE. Review artikel: Studi pustaka tentang prosedur kultur sel (in Indonesian). Farmaka. 2016;14(1):236-49.

Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature. 2014;505(7482):218-22. https://doi.org/10.1038/nature12799 PMid:24336213 DOI: https://doi.org/10.1038/nature12799

Geluk A, van Meijgaarden KE, Franken KL, Subronto YW, Wieles B, Arend SM, et al. Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis. Infect Immun. 2002;70(5):2544-8. https://doi.org/10.1128/iai.70.5.2544-2548.2002 PMid:11953394 DOI: https://doi.org/10.1128/IAI.70.5.2544-2548.2002

Murray RA, Siddiqui MR, Mendillo M, Krahenbuhl J, Kaplan G. Mycobacterium leprae inhibits dendritic cell activation and maturation. J Immunol. 2007;178(1):338-44. https://doi.org/10.4049/jimmunol.178.1.338 PMid:17182571 DOI: https://doi.org/10.4049/jimmunol.178.1.338

Spencer JS, Brennan PJ. The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy. Lepr Rev. 2011;82(4):344-57. https://doi.org/10.47276/lr.82.4.344 PMid:22439275 DOI: https://doi.org/10.47276/lr.82.4.344

Viney JL. Dendritic cell subsets: The ultimate T cell differentiation decision makers? Gut. 1999;45(5):640-1. https://doi.org/10.1136/gut.45.5.640 PMid:10517895 DOI: https://doi.org/10.1136/gut.45.5.640

Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science. 1999;283(5405):1183-6. https://doi.org/10.1126/science.283.5405.1183 PMid:10024247 DOI: https://doi.org/10.1126/science.283.5405.1183

Lambrecht BN, Prins JB, Hoogsteden HC. Lung dendritic cells and host immunity to infection. Eur Respir J. 2001;18(4):692-704. PMid:11716176

Parihar SP, Guler R, Khutlang R, Lang DM, Hurdayal R, Mhlanga MM, et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis. 2014;209(5):754-63. https://doi.org/10.1093/infdis/jit550 PMid:24133190 DOI: https://doi.org/10.1093/infdis/jit550

World Health Organization. WHO Model Prescribing Information: Drugs used in Bacterial Infections: Sexually Transmitted Diseases: Gonorrhoeaea. Geneva: World Health Organization Regional Office for the Eastern Mediterranean; 1995. Available from: https://www.apps.who.int/iris/handle/10665/37143. [Last accessed on 2020 Jul 05].

Unissa AN, Hanna LE. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb). 2017;105:96-107. https://doi.org/10.1016/j.tube.2017.04.008 PMid:28610794 DOI: https://doi.org/10.1016/j.tube.2017.04.008

Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J. Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol. 2009;191(21):6584-91. https://doi.org/10.1128/jb.00488-09 PMid:19717592 DOI: https://doi.org/10.1128/JB.00488-09

Mira E, León B, Barber DF, Jiménez-Baranda S, Goya I, Almonacid L, et al. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. J Immunol. 2008;181(5):3524-34. https://doi.org/10.4049/jimmunol.181.5.3524 PMid:18714025 DOI: https://doi.org/10.4049/jimmunol.181.5.3524

Yoshimura A, Suzuki M, Sakaguchi R, Hanada T, Yasukawa H. SOCS, inflammation, and autoimmunity. Front Immunol. 2012;3:1-9. https://doi.org/10.3389/fimmu.2012.00020 PMid:22566904 DOI: https://doi.org/10.3389/fimmu.2012.00020

Kagami SI, Owada T, Kanari H, Saito Y, Suto A, Ikeda K, et al. Protein geranylgeranylation regulates the balance between Th 17 cells and Foxp3+ regulatory T cells. Int Immunol. 2009;21(6):679-89. https://doi.org/10.1093/intimm/dxp037 PMid:19380384 DOI: https://doi.org/10.1093/intimm/dxp037

de Lima Fonseca AB, do Vale Simon M, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 2017;6(1):1-8. https://doi.org/10.1186/s40249-016-0229-3 PMid:28162092 DOI: https://doi.org/10.1186/s40249-016-0229-3

Hylton Gravatt LA, Flurie RW, Lajthia E, Dixon DL. Clinical guidance for managing statin and antimicrobial drug-drug interactions. Curr Atheroscler Rep. 2017;19(11):46. https://doi.org/10.1007/s11883-017-0682-x PMid:28990114 DOI: https://doi.org/10.1007/s11883-017-0682-x

Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: Mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565-81. https://doi.org/10.1016/j.clpt.2006.09.003 PMid:17178259 DOI: https://doi.org/10.1016/j.clpt.2006.09.003

Dapsone. Drug Bank; 2020. Available from: https://www.drugbank.ca/drugs/DB00250. [Last accessed on 2020 Dec 30].

Clofazimine. Drug Bank; 2020. Available from: https://www.drugbank.ca/drugs/DB00845. [Last accessed on 2020 Dec 30].

Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous effects of statin therapy: A review of literature. Cureus. 2020;12(3):e7404. https://doi.org/10.7759/cureus.7404 PMid:32337130 DOI: https://doi.org/10.7759/cureus.7404

Alffenaar JW, Akkerman OW, Van Hest R. Statin adjunctive therapy for tuberculosis treatment. Antimicrob Agents Chemother. 2016;60(11):7004. https://doi.org/10.1128/aac.01836-16 PMid:28045667 DOI: https://doi.org/10.1128/AAC.01836-16

Dutta NK, Bruiners N, Pinn ML, Zimmerman MD, Prideaux B, Dartois V, et al. Statin adjunctive therapy shortens the duration of TB treatment in mice. J Antimicrob Chemother. 2016;71(6):1570-7. https://doi.org/10.1093/jac/dkw014 PMid:26903278 DOI: https://doi.org/10.1093/jac/dkw014

Downloads

Published

2021-08-20

How to Cite

1.
Habiburrahman M, Ariq H, Yusharyahya SN. The Role of Lipid and the Benefit of Statin in Augmenting Rifampicin Effectivity for a Better Leprosy Treatment. Open Access Maced J Med Sci [Internet]. 2021 Aug. 20 [cited 2024 Nov. 21];9(F):246-59. Available from: https://oamjms.eu/index.php/mjms/article/view/6263

Issue

Section

Narrative Review Article

Categories