Effect of Variable Implant Tip Distances on Stress Distribution around the Mental Foramen: A Finite Element Analysis
DOI:
https://doi.org/10.3889/oamjms.2021.6407Keywords:
Finite element analysis, Cancellous bone, Mental nerve, Implant, GapAbstract
AIM: This study aimed to evaluate the effect of gap between traditional implant tip and mental nerve using finite element analysis.
METHODS: Four finite element models (FEM) were prepared for dummy crowns that were supported by traditional implants that were placed vertically in laser scanned mandibular bone geometry. Where gap distance were designed to be 1.5, 2.0, 2.5, and 3.0 mm. Dummy crown, 50 μm cement layer, and implant complex models’ components were modeled in 3D on engineering computer-aided design (CAD)/CAD (computer-aided manufacturer) software formerly collected in Finite Element Analysis package. Each model was subjected to two loading cases as 150N compressive load at central fossa, and 50N Oblique (45º) load at central fossa of the dummy crown.
RESULTS: Good agreement of the FEM was obtained when compared to similar studies. Under applied study loads, all resulting values of stresses and deformations of the four models were within physiological limits. The obtained data showed no effect on cortical bone, implant complex, cement layer, and dummy crown to changing of gap distance. In addition, the cancellous bone, especially around the mental canal, was considerably affected by the variation in that gap distance.
CONCLUSION: Increasing the gap distance between the dental implant tips may reduce the stress and deformation around the mental canal. Minimum gap distance of order 2.5 mm is recommended to reduce stresses and deformations around canal to favorable limits, while more gap distance is also recommended with larger bone geometries.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Nokar S, Jalali H, Nozari F, Arshad M. Finite element analysis of stress in bone and abutment-implant interface under static and cyclic loadings. Front Dent. 2020;17(21):1-8. https://doi.org/10.18502/fid.v17i21.4315 PMid:33615298 DOI: https://doi.org/10.18502/fid.v17i21.4315
Yoshitani M, Takayama Y, Yokoyama A. Significance of mandibular molar replacement with a dental implant: A theoretical study with nonlinear finite element analysis. Int J Implant Dent. 2018;4(1):4. https://doi.org/10.1186/s40729-018-0117-7 PMid:29484524 DOI: https://doi.org/10.1186/s40729-018-0117-7
Schwiedrzik JJ, Wolfram U, Zysset PK. Ageneralized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol. 2013;12(6):1155-68. https://doi.org/10.1007/s10237-013-0472-5 PMid:23412886 DOI: https://doi.org/10.1007/s10237-013-0472-5
Prados-Privado M, Bea JA, Rojo R, Gehrke SA, Calvo-Guirado JL, Prados-Frutos JC. A new model to study fatigue in dental implants based on probabilistic finite elements and cumulative damage model. Appl Bionics Biomech. 2017;2017:3726361. https://doi.org/10.1155/2017/3726361 PMid:28757795 DOI: https://doi.org/10.1155/2017/3726361
Elias CN. Factors affecting the Success of Dental Implants. Rijeka: InTech. Available from: http://www.intechopen.com/books/implant-dentistry-a-rapidly-evolving-practice/factors-affecting-the-success-of-dental-implants. [Last accessed on 2021 Jan 25]. https://doi.org/10.5772/18746 DOI: https://doi.org/10.5772/18746
Seth S, Kalra P. Effect of dental implant parameters on stress distribution at bone-implant interface. Int J Sci Res. 2013;2:121-4.
Gehrke SA, Frugis VL, Shibli JA, Fernandez MP, Sánchez de Val JE, Girardo JL, et al. Influence of implant design (cylindrical and conical) in the load transfer surrounding long (13 mm) and short (7 mm) length implants: A photoelastic analysis. Open Dent J. 2016;10(1):522-30. https://doi.org/10.2174/1874210601610010522 PMid:27843505 DOI: https://doi.org/10.2174/1874210601610010522
Rokaya D, Srimaneepong V, Wisitrasameewon W, Humagain M, Thunyakitpisal P. Peri-implantitis update: Risk indicators, diagnosis, and treatment. Eur J Dent. 2020;14(4):672-82. https://doi.org/10.1055/s-0040-1715779 PMid:32882741 DOI: https://doi.org/10.1055/s-0040-1715779
Mandhane SS, More AP. A review: Evaluation of design parameters of dental implant abutment. Inter J Emerg Sci Eng. 2014;2:64-7.
Syed AU, Rokaya D, Shahrbaf S, Martin N. Three-dimensional finite element analysis of stress distribution in a tooth restored with full coverage machined polymer crown. Appl Sci. 2021;11(3):1220. https://doi.org/10.3390/app11031220 DOI: https://doi.org/10.3390/app11031220
Gaviria L, Salcido JP, Guda T, Ong JL. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg. 2014;40(2):50-60. https://doi.org/10.5125/jkaoms.2014.40.2.50 PMid:24868501 DOI: https://doi.org/10.5125/jkaoms.2014.40.2.50
Prados-Privado M, Gehrke S, Rojo R, Prados-Frutos J. Probability of failure of internal hexagon and morse taper implants with different bone levels: A mechanical test and probabilistic fatigue. Int J Oral Maxillofac Implant. 2018;33(6):1266-73. https://doi.org/10.11607/jomi.6426 PMid:30427957 DOI: https://doi.org/10.11607/jomi.6426
Available from: https://www.straumann.com/en/dental-professionals/services/download-center/catalogs.html. [Last accessed on 2021 Jan 25].
Al Qahtani WM, Yousief SA, El-Anwar MI. Recent advances in material and geometrical modelling in dental applications. Open Access Maced J Med Sci. 2018;6(6):1138-44. https://doi.org/10.3889/oamjms.2018.254 PMid:29983817 DOI: https://doi.org/10.3889/oamjms.2018.254
Kinoshita H, Nakahara K, Matsunaga S, Usami A, Yoshinari M, Takano N, et al. Association between the peri-implant bone structure and stress distribution around the mandibular canal: A three-dimensional finite element analysis. Dent Mater J. 2013;32(4):637-42. https://doi.org/10.4012/dmj.2012-175 PMid:23903647 DOI: https://doi.org/10.4012/dmj.2012-175
Wazeh AM, El-Anwar MI, Atia RM, Mahjari RM, Linga SA, Al-Pakistani LM, et al. 3D FEA study on implant threading role on selection of implant and crown materials. Open Access Maced J Med Sci. 2018;6(9):1702-6. https://doi.org/10.3889/oamjms.2018.331 PMid:30337994 DOI: https://doi.org/10.3889/oamjms.2018.331
El-Anwar MI, El-Mofty MS, Awad AH, El-Sheikh SA, El-Zawahry MM. The effect of using different crown and implant materials on bone stress distribution: A finite element study. Egypt J Oral Maxillofac Surg. 2014;5(2):58-64. https://doi.org/10.1097/01.omx.0000444266.10130.4c DOI: https://doi.org/10.1097/01.OMX.0000444266.10130.4c
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol 2000. 2017;73(1):22-40. https://doi.org/10.1111/prd.12179 PMid:28000277 DOI: https://doi.org/10.1111/prd.12179
Prados-Privado M, Martínez-Martínez C, Gehrke SA, Prados- Frutos JC. Influence of bone definition and finite element parameters in bone and dental implants stress: A literature review. Biology. 2020;9(8):224. https://doi.org/10.3390/biology9080224 DOI: https://doi.org/10.3390/biology9080224
Hou PJ, Ou KL, Wang CC, Huang CF, Ruslin M, Sugiatno E, et al. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant. J Mech Behav Biomed Mater. 2018;79:173-80. https://doi.org/10.1016/j.jmbbm.2017.11.042 PMid:29306080 DOI: https://doi.org/10.1016/j.jmbbm.2017.11.042
Fretwurst T, Nack C, Al-Ghrairi M, Raguse D, Stricker A, Schmelzeisen R, et al. Long-term retrospective evaluation of the peri-implant bone level in onlay grafted patients with iliac bone from the anterior superior iliac crest. J Craniomaxillofac Surg. 2015;43(6):956-60. https://doi.org/10.1016/j.jcms.2015.03.037 PMid:25964006 DOI: https://doi.org/10.1016/j.jcms.2015.03.037
Schincaglia GP, Thoma DS, Haas R, Tutak M, Garcia A, Taylor TD, et al. Randomized controlled multicenter study comparing short dental implants (6 mm) versus longer dental implants (11-15 mm) in combination with sinus floor elevation procedures. Part 2: Clinical and radiographic outcomes at 1 year of loading. J Clin Periodontol. 2015;42(11):1042-51. https://doi.org/10.1111/jcpe.12465 PMid:26425812 DOI: https://doi.org/10.1111/jcpe.12465
Srinivasan M, Vazquez L, Rieder P, Moraguez O, Bernard JP, Belser UC. Survival rates of short (6 mm) micro-rough surface implants: A review of literature and meta-analysis. Clin Oral Implants Res. 2014;25(5):539-45. https://doi.org/10.1111/clr.12125 PMid:23413956 DOI: https://doi.org/10.1111/clr.12125
Hentschel A, Herrmann J, Glauche I, Vollmer A, Schlegel KA, Lutz R. Survival and patient satisfaction of short implants during the first 2 years of function: A retrospective cohort study with 694 implants in 416 patients. Clin Oral Implants Res. 2016;27(5):591-6. https://doi.org/10.1111/clr.12626 PMid:26096052 DOI: https://doi.org/10.1111/clr.12626
Anitua E, Pinas L, Escuer-Artero V, Fernandez RS, Alkhraisat MH. Short dental implants in patients with oral lichen planus: A long-term follow-up. Br J Oral Maxillofac Surg. 2018;56(3):216-20. https://doi.org/10.1016/j.bjoms.2018.02.003 PMid:29502938 DOI: https://doi.org/10.1016/j.bjoms.2018.02.003
Ngyen TT, Eo MY, Cho YJ, Myoung H, Kim SM. 7-mm-long dental implants: Retrospective clinical outcome in medically compromised patients. J Korean Assoc Oral Maxillofac Surg. 2019;45(5):260-66. https://doi.org/10.5125/jkaoms.2019.45.5.260 PMid:31728333 DOI: https://doi.org/10.5125/jkaoms.2019.45.5.260
El-Anwar MI, El-Zawahry MM, Ibraheem EM, Nassani MZ, ElGabry H. New dental implant selection criterion based on implant design. Eur J Dent. 2017;11(2):186-91. https://doi.org/10.4103/1305-7456.208432 PMid:28729790 DOI: https://doi.org/10.4103/1305-7456.208432
Tufekcioglu S, Delilbasi C, Gurler G, Dilaver E, Ozer N. Is 2 mm a safe distance from the inferior alveolar canal to avoid neurosensory complications in implant surgery? Niger J Clin Pract. 2017;20(3):274-7. https://doi.org/10.4103/1119-3077.183240 PMid:28256479 DOI: https://doi.org/10.4103/1119-3077.183240
Sivolella S, Meggiorin S, Ferrarese N, Lupi A, Cavallin F, Fiorino A, et al. CT-based dentulous mandibular alveolar ridge measurements as predictors of crown-to-implant ratio for short and extra short dental implants. Sci Rep. 2020;10:16229. https://doi.org/10.1038/s41598-020-73180-3 DOI: https://doi.org/10.1038/s41598-020-73180-3
Nunes M, Almeida RF, Felino AC, Malo P, de Araújo Nobre M. The influence of crown-to-implant ratio on short implant marginal bone loss. Int J Oral Maxillofac Implants. 2016;31(5):1156-63. https://doi.org/10.11607/jomi.4336 PMid:27632273 DOI: https://doi.org/10.11607/jomi.4336
Reich W, Schweyen R, Hey J, Otto S, Eckert AW. Clinical performance of short expandable dental implants for oral rehabilitation in highly atrophic alveolar bone: 3-year results of a prospective single-center cohort study. Medicina (Kaunas). 2020;56(7):333. https://doi.org/10.3390/medicina56070333 PMid:32635173 DOI: https://doi.org/10.3390/medicina56070333
Felice P, Barausse C, Pistilli R, Ippolito DR, Esposito M. Short implants versus longer implants in vertically augmented posterior mandibles: Result at 8 years after loading from a randomised controlled trial. Eur J Oral Implantol. 2018;11(4):385-95. https://doi.org/10.1111/clr.55_13356 PMid:30515480 DOI: https://doi.org/10.1111/clr.55_13356
García-Ochoa AP, Pérez-González F, Negrillo Moreno A, Sánchez-Labrador L, Cortés-Bretón Brinkmann J, Martínez- González JM, et al. Complications associated with inferior alveolar nerve reposition technique for simultaneous implant-based rehabilitation of atrophic mandibles. A systematic literature review. J Stomatol Oral Maxillofac Surg. 2020;121(4):390-6. https://doi.org/10.1016/j.jormas.2019.12.010 PMid:31904530 DOI: https://doi.org/10.1016/j.jormas.2019.12.010
Papaspyridakos P, De Souza A, Vazouras K, Gholami H, Pagni S, Weber HP. Survival rates of short dental implants (≤6 mm) compared with implants longer than 6 mm in posterior jaw areas: A meta-analysis. Clin Oral Implants Res. 2018;29(16):8-20. https://doi.org/10.1111/clr.13289 PMid:30328206 DOI: https://doi.org/10.1111/clr.13289
Saletta JM, Garcia JJ, Caramês JM, Schliephake H, da Silva Marques DN. Quality assessment of systematic reviews on vertical bone regeneration. Int J Oral Maxillofac Surg. 2019;48(3):364-72. https://doi.org/10.1016/j.ijom.2018.07.014 PMid:30139710 DOI: https://doi.org/10.1016/j.ijom.2018.07.014
Ravidà A, Barootchi S, Askar H, Suárez-López del Amo F, Tavelli L, Wang HL. Long-term effectiveness of extra-short (6 mm) dental implants: A systematic review. Int J Oral Maxillofac Implant. 2019;34(1):68-84. https://doi.org/10.11607/jomi.6893 PMid:30695086 DOI: https://doi.org/10.11607/jomi.6893
Anitua E, Alkhraisat MH. 15-year follow-up of short dental implants placed in the partially edentulous patient: Mandible Vs maxilla. Ann Anat. 2019;222:88-93. https://doi.org/10.1016/j.aanat.2018.11.003 PMid:30448466 DOI: https://doi.org/10.1016/j.aanat.2018.11.003
Flanagan D. Stress related peri-implant bone loss. J Oral Implantol. 2010;36(4):325-7. PMid:20545532 DOI: https://doi.org/10.1563/AAID-JOI-D-09-00097
Triches DF, Alonso FR, Mezzomo LA, et al. Relation between insertion torque and tactile, visual, and rescaled gray value measures of bone quality: A cross-sectional clinical study with short implants. Int J Implant Dent. 2019;5(1):9. https://doi.org/10.1186/s40729-019-0158-6 PMid:30740630 DOI: https://doi.org/10.1186/s40729-019-0158-6
Schwartz SR. Short implants: An answer to a challenging dilemma? Dent Clin North Am. 2020;64(2):279-90. PMid:32111268 DOI: https://doi.org/10.1016/j.cden.2019.11.001
Reich W, Schweyen R, Heinzelmann C, Hey J, Al-Nawas B, Eckert AW. Novel expandable short dental implants in situations with reduced vertical bone height-technical note and first results. Int J Implant Dent. 2017;3(1):46. https://doi.org/10.1186/s40729-017-0107-1 PMid:29086193 DOI: https://doi.org/10.1186/s40729-017-0107-1
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Waleed M. S. Al Qahtani (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0